
DISTRIBUTED DETECTION OVER MULTIPLE ACCESS CHANNELS

Ying Lin, Biao Chen∗

Syracuse University

Lang Tong

Cornell University

ABSTRACT

We address the design of binary local sensor quantizers for
decentralized detection over multiple access channels. Our
goal is to minimize the error probability at the fusion cen-
ter using a single snapshot of local observations. Consider-
ing both the synchronized and asynchronous transmissions
among sensors, we establish the optimality of a likelihood
ratio test for both cases. For the case of asynchronous trans-
missions, to compensate for the unknown fading channel pa-
rameters and transmission delays, we propose a structure con-
sisting of a RAKE receiver and a square-law detector. Sim-
ulations results are presented to demonstrate effectiveness of
the design procedure.

Index Terms— Wireless sensor networks, distributed de-
tection, multiple access channel, likelihood ratio quantizers

1. INTRODUCTION

Distributed detection schemes that integrate the transmission
and processing to achieve better performance with practical
constraints have been studied recently [1, 2]. A prevailing
model used for such applications is the parallel channel model
where sensors communicate to the fusion center via orthogo-
nal channels.
One of the disadvantages of transmitting local decisions

over orthogonal channels is the large bandwidth consump-
tion as the number of local sensors K increases. An appeal-
ing alternative is to allow multiple sensors share a common
channel, i.e., communicating via a multiple access channel
(MAC). Indeed, MAC has been adopted for decentralized de-
tection ( [3–5]). In [4] and [5], for type-based distributed
detection, optimal fusion rules have been developed in the
asymptotic case as K → ∞ under the assumption of per-
fect synchronization among sensor transmissions. However,
the design of optimal local decision rules has not been ad-
dressed. Furthermore, the assumption of synchronized sen-
sor transmissions over MAC may not be realistic. In practical
large-scale sensor networks, maintaining perfect synchroniza-
tion among a large number of sensors may be prohibitive due
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to stringent resource constraints and geographical dispersive-
ness. This motivates our current work.
In this paper, we try to answer the following questions:

What is the optimal local detector structure for distributed de-
tection over MAC under asynchronous sensor transmissions,
and, given the optimal structure, a practically feasible pro-
cedure to optimize the parameters (i.e., thresholds) for both
synchronous and asynchronous cases. To address these ques-
tions, we consider the binary quantizer design for a binary
hypothesis testing problem where sensors transmit their nite
alphabet local messages through MAC. We restrict ourselves
to the case of using a single snapshot of conditionally inde-
pendent local observations. The case of multiple bits sensor
outputs can be straightforwardly generalized based on the re-
sults of binary sensor outputs. In this work, we adopt the
Bayesian criterion, i.e., one wants to minimize the error prob-
ability at the fusion center. For both synchronized and asyn-
chronous cases, we show that the optimal local decision rules
are in the form of likelihood ratio test (LRT). In the asyn-
chronous case, to ease the implementation of the local de-
cision rules and compensate for the unknown delays among
sensor transmissions, we further propose a structure consist-
ing of a RAKE receiver with a square-law detector (RAKE-
SL) to produce the fusion statistic.
The organization of this paper is as follows. In the next

section, we introduce the problem formulation for the general
case of decentralized detection over MAC. We consider the
synchronized case in Section 3 and derive the optimal local
decision rules. In Section 4, we investigate the local decision
rules for the asynchronous case. Design examples are pro-
vided in Section 5 and we conclude in Section 6.

2. PROBLEM FORMULATION

Consider a binary hypotheses testing problem with K dis-
tributed sensors, as illustrated in Fig. 1. Upon collecting Xk

generated by one of the two hypotheses H0/H1 that under
test, the kth sensor makes a local decision Uk that takes val-
ues from a nite alphabet. Assume the observations are inde-
pendent and identically distributed (i.i.d.) given each hypoth-
esis and the prior probability is given by π0 = P (H0) and
π1 = P (H1) = 1 − π0. For simplicity, we assume binary
sensor signaling, i.e., Uk = γk(Xk) ∈ {1, 0}. Sensors are di-
vided into two groups by their Uk values. Only sensors with
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Fig. 1. A block diagram for a wireless sensor network tasked
with binary hypothesis testing over multiple access channels.

Uk = 1 transmit their local decisions through a multiple ac-
cess channel using a common waveform s(t). Alternatively,
one can have the two groups of sensors transmitting in two
separate channels, as in the type based schemes, and the re-
sults obtained in this paper can be trivially extended to such a
case. The bandwidth consumption is dramatically reduced
compared to the case of requiring K orthogonal channels.
The autocorrelation function of s(t) is de ned as cs(τ) =∫ T

t=0
s(t)s∗(t−τ)dt, where T denotes the symbol period, and

assume cs(0) =
∫ T

t=0
|s(t)|2dt = E; i.e., E is the energy re-

quired to transmit one symbol to take into account the energy
constraints of the system.
At the fusion center, the received signal is 1:

y(t) =

K1∑
k=1

hks(t − dk) + w(t), 0 ≤ t ≤ T (1)

where
• K1 is the total number of sensors that decide Uk = 1,
i.e,K1 =

∑K

k=1 Uk. It is unknown at the fusion center.

• hk, k = 1, 2, · · · ,K1, denote the channel fading coef-
cients. In the current work, we assume each link ex-
periences the at Rayleigh fading, thus, hk’s are i.i.d.
complex Gaussian with zero mean and variance σ2

h.

• dk, k = 1, 2, · · · ,K1, denote the unknown delay for
different sensors. For the synchronous case, all dk’s
are identical and is assumed to be zero without loss of
generality.

• w(t) is the complex Gaussian channel noise with zero
mean and variance σ2

w.

The fusion center implements the optimal fusion rule based
on the channel output, i.e., U0 = γ0(y(t)). An error happens
if the global decision U0 differs from the true hypothesis.

1For the general case where Uk takesM possible values,M − 1 groups
of sensors transmit throughM − 1 MACs. The output will consist a vector
withM − 1 components

Our objective is to develop optimal local decision rules
that minimize the error probability at the fusion center. Given
the model in Eq.(1), we consider the local decision rule design
for both synchronous and asynchronous cases.

3. SYNCHRONOUS CASE

In the synchronized case, we have: y(t) =
∑K1

k=1 hks(t) +
w(t), 0 ≤ t ≤ T . For this case, the matched lter based
receiver is optimal for the detection problem as its output pro-
vides a suf cient statistic. The output signal of the matched
lter, denoted by r, can be expressed as r =

∫ T

0
y(t)s∗(t)dt =∑K1

k=1 hkE + Q1 where Q1 �
∫ T

0
w(t)s∗(t)dt, is a com-

plex Gaussian random variable with zero mean and variance
σ2

wE. We can show that given K1, r is also complex Gaus-
sian distributed. In particular, r|K1 � CN (0, σ2

1), where
σ2

1 = K1σ
2
hE2 + σ2

wE.
Equivalently, the optimal fusion rule can be implemented

based on the matched lter output, i.e, U0 = γ0(r). Specif-
ically, the fusion center employs the maximum a posteriori
probability rule with threshold π0

π1

.
Under the Bayesian framework, we aim to design the op-

timal local quantizers to minimize the error probability at the
fusion center. The results are summarized below:

Theorem 1 Assume thatXk’s are conditionally independent,
sensor transmissions are perfectly synchronized, and the fu-
sion rule and the kth local decision satisfy

P (U0 = 1|uk1) − P (U0 = 1|uk0) ≥ 0, (2)
P (U0 = 0|uk0) − P (U0 = 0|uk1) ≥ 0. (3)

Then the optimal local decision rule for the kth sensor amounts
to the following LRT

P (Uk = 1|Xk) =

⎧⎪⎨
⎪⎩

1 if p(Xk|H1)
p(Xk|H0)

> τk

0 if p(Xk|H1)
p(Xk|H0)

≤ τk,

where
u

k = [U1, · · · , Uk−1, Uk+1, · · · , UK ],u = [uk, Uk]

u
k1 = [U1, · · · , Uk−1, Uk = 1, Uk+1, · · · , UK ]

u
k0 = [U1, · · · , Uk−1, Uk = 0, Uk+1, · · · , UK ]

τk =
π0

∑
u

k P (uk|H0)[P (U0 = 1|uk1) − P (U0 = 1|uk0)]

π1

∑
u

k P (uk|H1)[P (U0 = 0|uk0) − P (U0 = 0|uk1)]

(4)

Eq. (2) and (3) amount to using a monotone fusion rule. A
sketch of the proof is given in Appendix. Clearly, the thresh-
old τk at the kth sensor is coupled with those at other sensors.
To obtain the optimal thresholds τk, we devise an iterative al-
gorithm described in Section 5.
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4. ASYNCHRONOUS CASE

In the asynchronous case, y(t) is given as in Eq. (1). In the
current setting, we assume each sensor experiences a different
delay and all delays are within [0, Tmax], where Tmax denotes
the maximum delay and is assumed known.
Similarly we can show that the optimal local decision rules

amount to the LRT, as summarized in the theorem below.

Theorem 2 Assume thatXk’s are conditionally independent,
sensor transmissions are asynchronous, and further that the
fusion rule and the kth local decision satisfy Eq. (2) and
(3), then the optimal local decision rule for the kth sensor
amounts to the LRT and threshold τk is de ned as in Eq. (4).

The unknown delays in the received signal model make it
impossible to implement the LRT decision rules described in
Theorem 2. For example, it is untractable to evaluate the like-
lihood functions, e.g., P (y(t)|Hj), for j = 0, 1. The simple
matched lter structure in the synchronized case is not appli-
cable here. In this work, we propose a RAKE-SL receiver
structure at the fusion center, and use the corresponding out-
put as the fusion statistic. The motivation is from the common
practice in digital communication systems where RAKE-SL
is used to compensate for the unknown delays and channel co-
ef cients [6]. This RAKE-SL structure allows us to carry out
the LRT based fusion rule as described below. Such structure
also makes it tractable to optimize the local decision rules.
The received signal y(t), is processed by a RAKE-SL re-

ceiver with s(t) as the reference signal. By appropriately
choosing L, the number of taps of the RAKE-SL, and sig-
nal bandwidthW , we can project the delays dk to the taps of
the RAKE-SL. The output, R, is

R =
L∑

l=1

∣∣∣∣∣
∫ T

0

y(t)s∗(t −
l

W
)dt

∣∣∣∣∣
2

.

In general, the probability density function (pdf) ofR, is hard
to characterize, which amounts to nding the pdf of the sum
of correlated random variables. However, we show that under
some condition, R is the sum of two independent gamma dis-
tributed variables and admits an exact pdf. The lemma below
summarizes the results. We skip the proof.

Lemma 1 When the following is true:
∫ T

t=0
s(t − n

W
)s∗(t −

m
W

)dt ≈ 0, for n �= m, then R|K1
is the sum of two indepen-

dent gamma random variables. In particular, R = U1 + V1

where U1|K1
∼ gamma(K1, σ

2
U ), V1|K1

∼ gamma(L −
K1, σ

2
V ), further, σ2

U = E2σ2
h + Eσ2

w and σ2
V = Eσ2

w.

Referred to as the orthogonal property of a signal, the con-
dition speci ed in Lemma 1 is valid in certain practical sce-
narios. For instance, this condition can be satis ed by choos-
ing appropriate PN code with spread-spectrum techniques [6].
The pdf of the sum of two independent gamma distribu-

tions was established in [7]. We can express the conditional

density function P (R|K1) in a similar manner. This will en-
able the implementation of the fusion rule and computation
of τk. Next, we validate the proposed design procedures by
examples for both synchronized and asynchronous cases.

5. EXAMPLES

In this section, we use examples to demonstrate how to ob-
tain the optimal local thresholds. Consider the detection of a
known signal in additive Gaussian noises that are i.i.d. among
sensors, i.e.,

H0 : Xk = Nk

H1 : Xk = S + Nk

for k = 1, 2, ...,K with Nk being i.i.d. N (0, σ2). Let K =
10, S = 1, and σ2

h = 1. For the Gaussian problem, the
likelihood ratio threshold can be converted to the observation
threshold which we use throughout this section.

5.1. Synchronized transmissions

Under synchronized transmissions, the optimal local thresh-
olds can be determined using Eq. (4). The iterative algorithm
for decision rule optimization is described below.
1. Initialize τk, for k = 1, 2, ...,K.
2. Obtain the optimal fusion rule for xed τk.
3. For xed fusion rule and τj , j = 2, ...,K, calculate τ1

using (4).
4. Repeat the previous step for all sensors.
5. Check convergence, i.e., if the obtained τk, k = 1, ...,K

are identical (up to a prescribed precision) to that from the
previous iteration then stop. Otherwise, go to 2.
Table 1 lists results for π0 = 0.5, channel SNR = 0dB,

and for different observation SNRs. We compare the thresh-
olds obtained by the iterative algorithm and by the exhaustive
search. Clearly the results match very well. Furthermore, all
τk’s converge to the same value, i.e., identical thresholds at lo-
cal sensors. This observation is consistent with the results ob-
tained in [8] where it was shown that all local thresholds con-
verge to a common value asymptotically. Table 1 shows that
at high observation SNR, the optimal threshold approaches
to the local optimal threshold, τ = 0.5 ( the LR threshold
τLR = π0/π1 = 1), the threshold that achieves minimum
error probability at local sensors.

Table 1. Thresholds under synchronized case
SNR(dB) 0 5 10 20
iterative τ 1.3102 0.9327 0.7024 0.5235
exhaustive τ 1.3107 0.9325 0.7024 0.5233

5.2. Asynchronous transmissions

Now we consider the asynchronous case. The output of the
RAKE-SL, R, is used as the fusion statistic. We let K =
L = 10. τk, k = 1, 2, ...K, can be determined using Eq.
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Table 2. Thresholds under asynchronous case
SNR(dB) 0 5 10 20
iterative τ 0.9111 0.7597 0.6578 0.5214
exhaustive τ 0.9106 0.7599 0.6580 0.521
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Fig. 2. Error prob. versus channel SNR, asynchronous case.

(4) and the iterative algorithm describe above. Table 2 lists
the analytically calculated results at π0 = 0.5 and channel
SNR = 5dB for both the iterative algorithm and the exhaus-
tive search method. Again, the optimal threshold converges
to the local optimal threshold 0.5 at high observation SNR.
In Fig. 2, we plot the simulated error probability curves as

a function of channel SNR at π0 = 0.5 for the asynchronous
case, where we use K = L = 10, observation SNR = 5dB,
10000 Monte Carlo runs. dk are generated uniformly from
[0, L−1]. We adopt a m-sequence with length of 28 to gener-
ate s(t). Fig. 2 shows that the optimal threshold outperforms
the local optimal threshold as channel SNR increases.

6. CONCLUSIONS

For distributed detection in a wireless network, integrating
transmission schemes and sensor decision rule design may
prove useful in resource constrained applications. In this work,
aiming to reduce the bandwidth consumption, we consider
decentralized detection over MAC. We investigate two cases:
synchronized and asynchronous transmissions. In both sce-
narios, the optimality of the LRT for local sensor decisions
are established under the Bayesian criterion. Numerical ex-
amples demonstrate that carefully designed local sensor deci-
sion rules signi cantly outperform the naive approach of min-
imizing the local sensor error probability.

7. APPENDIX-PROOF OF THEOREM 1

In the synchronized case, U0 = γ0(y(t)), y(t) is a function
of K1, hk, s(t), and w(t), thus a function of uk and Uk. Let
A � (hk, s(t), w(t)). Similarly as in [9], we de ne

J � E{C(γ0(u
k, Uk, A),uk, Uk, A,H)}.

and F (.) = C(γ0(u
k, Uk, A),uk, Uk, A,H). Since u

k and
Uk are conditional independent, results established in [9] are
directly applicable to our setup. To achieve minimum Pe,
we have J = Pr(γ0(y(t)) �= H) = E[I(U0 �= H)] where
I(U0 �= H) is an indicator function. Thus, as derived in
[9, 10], the optimal local decision rules are given by the LRT
and the threshold is τk = π0[αk(H0,d=1)−αk(H0,d=0)]

π1[αk(H1,d=0)−αk(H1,d=0) which
reduces to Eq. (4). If r, the matched lter output is used,
similarly, we can show that same results hold.
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