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ABSTRACT

This paper extends the homogeneous wireless sensor net-
work (WSN) model to possess (possibly) varying levels of
noise that represent environment clusters in a WSN. The esti-
mation of the source parameter is approached from Maximum
Likelihood (ML) perspective. The Cramer Rao Lower Bound
(CRLB) for any unbiased estimator operating in a clustered
WSN environment is derived. Noting that the ML estimate
cannot be found in closed–from, we resort to a numerical
search. Although numerically determined, the ML estimate
is guaranteed to converge to the optimal solution since it is
shown here that the log–likelihood function is concave. Also
considered is the estimation of a random parameter with a pri-
ori information, which is approached from Maximum A Pos-
teriori (MAP) perspective. Finally, the proposed MAP and
ML optimal are validated and compared to theoretical bounds
with illustrative numerical examples.

Index Terms— decentralized estimation, clustering.

1. INTRODUCTION

Many wireless sensor networks (WSNs) is constrained by the
fact the that bandwidth is limited, imposing the use and trans-
mission of quantized binary versions of the original noisy
observations. Many recent efforts address the estimation of
a deterministic source signal from quantized noisy observa-
tions [1–4]. When the probability density function (pdf) of
the sensor noise is known, transmitting a single bit per sensor
leads to minimal loss in estimator variance compared with a
clairvoyant estimator (estimator based on unquantized mea-
surements) [1, 4]. Alternatively, when the sensor noise pdf is
unknown, pdf–unaware estimators based on quantized sensor
data have also been introduced recently [3].

Prior works consider a homogeneous sensor network en-
vironment, simplifying the environment characterization to a
single (spread) parameter. Although this assumption yields
tractable and closed–form solutions, unfortunately, this is not
the case in practical WSN scenarios where the sensors are dis-
tributed in large–scaled environments that (possibly) possess
different characteristics. In this paper, we extend the WSN
model to admit clusters of sensors that have varying levels

of reliability, i.e., varying levels of noise. Utilizing this clus-
tered WSN model, we derive the maximum likelihood (ML)
estimate of the source signal. The Cramer Rao Lower Bound
(CRLB) for any unbiased estimator operating on a clustered
WSN environment is also derived. Noting that the source pa-
rameter cannot be found in closed–from, we resort to a nu-
merical search approach, namely Newton’s algorithm. Albeit
numerically determined, the estimate is guaranteed to con-
verge to the optimal solution since we show here that the log–
likelihood function is concave. Also addressed is the design
of ef cient estimators for the case in which the parameter of
interest is stochastic with density function known a priori. In
particular, we develop Maximum a Posteriori (MAP) estima-
tors for decentralized parameter estimation schemes charac-
terized by clustered statistics. Finally, numerical examples
validating and comparing the developed optimal techniques
are presented.

2. PROBLEM FORMULATION

Consider a set of K distributed sensors, each making an ob-
servation on a source signal θ. The sensors are, however, not
in a homogeneous environment, i.e., the sensors are grouped
in clusters according to their locations, exhibiting local sta-
tistics. Let {Cm : m = 1, 2, . . . ,M} denote the sensor clus-
ters with corresponding variances {σ2

m : m = 1, 2, . . . ,M},
where M is the total number of clusters. The sensor observa-
tions are corrupted with additive noise, the variance of which
is cluster dependent, and are given as

xm(k) = θ + nm(k), m = 1, 2, . . . ,M (1)

and k = 1, 2, . . . ,#(Cm), where #(Cm) denotes the number
of sensors in cluster Cm. Note that K =

∑M

m=1 #(Cm). Due
to bandwidth limitations in WSNs, the observations {xm(k) :
m = 1, 2, . . . ,M and k = 1, 2, . . . ,#(Cm)} have to be quan-
tized. To this end, we consider the quantization as the con-
struction of a set of indicator variables consisting of binary
observations [1–4]

bm(k) = 1{xm(k) ∈ (τ,+∞)}, k = 1, 2, . . . ,K (2)

where τ ∈ Z is a threshold de ning bm(k), Z denotes the
set of real numbers, and 1{·} is the indicator function. Note
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that we consider the case of a single threshold for all sensors.
The effect of the varying sensor thresholds are also recently
studied for a homogeneous WSNs [1].

The bandwidth constraint manifests itself in dictating that
θmust be estimated based on the binary observations{bm(k) :
m = 1, 2, . . . ,M and k = 1, 2, . . . ,#(Cm)}. Instrumental to
the ensuing scheme is the fact that each bm(k) is a Bernoulli
random variable with parameter

qm(θ) � Pr{bm(k) = 1} = 1− Fm(τ − θ) (3)

whereFm(·) denotes the cumulative distribution function cor-
responding to cluster Cm.

We hence consider a WSN model where the sensors are
grouped into clusters according to environment statistics and
each sensor observes a corrupted version of the determinis-
tic source signal θ. The corruption level experienced by an
individual sensor depends on the cluster Cm to which it be-
longs. All sensors send their quantized observations to a fu-
sion center, Ψ(·). The fusion center estimates the source sig-
nal θ utilizing the clusters’ statistics and binary observations.
Throughout the rest of the paper we assume that the observa-
tion noise is characterized by the Gaussian density function
fm(u) = 1/(σm

√
2π) exp

(−u2/(2σ2
m)

)
where σm denotes

the spread parameter associated with cluster Cm.

3. MLE BASED ON BINARY OBSERVATIONS IN
CLUSTERED ENVIRONMENTS

The clustered WSN model, which incorporates varying levels
of noise, represents a more realistic WSN scenario compared
to the single level, uniform noise case. This section details
the estimation of the source parameter approached from a ML
perspective in such environments. The CRLB of any unbiased
estimator operating on clustered WSN environments is also
derived.

Note that the pdf of bm(k) is given by fbm
(b) = δ(b −

1)qm(θ)+δ(b)(1−qm(θ)). This formulation, however, makes
the ML estimation intractable. To avoid this problem, we
rewrite the density function as fbm

(b) = [qm(θ)]b[1−qm(θ)]1−b

noting that b ∈ {0, 1}. Furthermore, we suppose that the
cluster Cm, from which the observation bm(k) emanates, is
known at the fusion center. Now de ne b � {bm(k) : m =
1, 2 . . . ,M and k = 1, 2, . . . ,#(Cm)}. The log–likelihood
function, ΛL(b, θ), is, due to noise independence, given by

ΛL(b, θ) =

M∑
m=1

#(Cm)∑
k=1

bm(k) log(qm(θ))

+ (1− bm(k)) log(1− qm(θ))

(4)

from which we can de ne the the ML estimate of θ, given b,
as

θ̂ = arg max
θ

{ΛL(b, θ)}. (5)

As θ̂ in (4) and (5) cannot be found in closed form, we resort
to the numerical search Newton’s algorithm, which is based
on the iteration

θ̂(j + 1) = θ̂(j)− Λ
(1)
L

(b, θ̂(j))

Λ
(2)
L

(b, θ̂(j))
(6)

where

Λ
(1)
L

(b, θ) =

M∑
m=1

#(Cm)q̂m(θ)
fm(τ − θ)

1 − Fm(τ − θ)

−#(Cm)(1− q̂m(θ))
fm(τ − θ)
Fm(τ − θ)

(7)

and

Λ
(2)
L

(b, θ) =
M∑

m=1

#(Cm)q̂m(θ)

× [1− Fm(τ − θ)]f (1)
m (τ − θ)− f2

m(τ − θ)
[1− Fm(τ − θ)]2

−#(Cm)(1− q̂m(θ))

× Fm(τ − θ)f (1)
m (τ − θ) + f2

m(τ − θ)
[Fm(τ − θ)]2 .

(8)

Although numerically determined, the ML estimate is guar-
anteed to converge to the optimal solution as the following
proposition proves that ΛL(b, θ) is concave.

Proposition 1 The log–likelihood function ΛL(b, θ) is con-
cave on θ, i.e., for all {θ1, θ2} ∈ �, where � denotes the set
of real numbers, the following holds

ΛL(b, (1 − λ)θ1 + λθ2) ≥ (1− λ)ΛL(b, θ1) + λΛL(b, θ2)
(9)

for λ ∈ [0, 1].

Proof Sketch 1 The concavity is shown utilizing the facts that
the qm(θ) is log–concave since it is integral of a log–concave
function, and that log(·) is a concave function.

The concavity of ΛL(b, θ) guarantees the convergence of
Newton’s iteration to the global maximum, regardless of the
initialization.

Consider next the CRLB of any unbiased estimator op-
erating in a clustered WSN. The CRLB in this case is given
by

B(b, θ) � −
(
E

[
∂2ΛL(b, θ)

∂θ2

])−1

. (10)

More speci cally, the CRLB for the source estimation prob-
lem in inhomogeneous environments is established in the fol-
lowing proposition.
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Proposition 2 The CRLB for any unbiased estimator operat-
ing on clustered fusion center observations is

B(b, θ) =
1

K

[
M∑

m=1

ψm

f2
m(τ − θ)

[1− Fm(τ − θ)]Fm(τ − θ)

]−1

(11)
where ψm = #(Cm)/K .

Proof Sketch 2 To obtain the CRLB, take the expected value
of the second derivative of the log–likelihood function with
respect to bm. Note that q̂m(θ) is unbiased indicating that
E(q̂m(θ)) = qm(θ). Also the terms involving f (1)

m (τ − θ) �

∂fm(τ − θ)/∂θ disappear and the CRLB simply follows.
As expected, the CRLB based on the clustered b reduces

to the homogeneous case CRLB when the noise is uniform
across sensors. In addition, as in the simpli ed WSN model
case, it is straightforward to show that the minimum of the
CRLB given in Proposition 3 is achieved when τ = θ. That
is, Bmin(b, θ) = [B(b, θ) : τ = θ] which is given by

Bmin(b, θ) =
π

2K

[
M∑

m=1

ψm

σ2
m

]−1

(12)

where we utilized the facts that Fm(0) = 1/2 and f2
m(0) =

(σ2
m2π)−1. Iterative algorithm such as the ones detailed [1,5]

can be utilized to set the threshold τ close to θ.

4. EXTENSIONS TO RANDOM PROCESSES

This section addresses the design of ef cient estimators when
the parameter of interest is a random variable with density
function known a priori. In particular, we develop Maximum
a Posteriori (MAP) estimators for decentralized parameter es-
timation schemes characterized by clustered statistics.

Let fθ(·) denote the density function of the source. Ac-
cordingly, the MAP estimate of θ is given by

θ̂MAP = arg max
θ

{Λ(b, θ)fθ(θ)}. (13)

Taking the natural log of the above gives

θ̂MAP = argmax
θ

{ΛL(b, θ) + log(fθ(θ))}. (14)

Note that ΛL(b, θ) + log(fθ(θ)) is concave if fθ(θ) is a log–
concave density since ΛL(b, θ) is concave and summation
preserves concavity. Numerical methods, such as the one dis-
cussed in Section 3, can thus be utilized to obtain the optimal
solution.

For the estimation of random parameters, bounds on mean
square error (MSE) can be obtained by computing the perti-
nent Fisher Information J . Speci cally, the MSE of the esti-
mate is bounded by

MSE(θ̂) ≥ (J )−1. (15)

The following proposition establishes a performance bound
for the random parameter estimation case in a decentralized
estimation scheme characterized by clustered statistics. Specif-
ically, the commonly encountered Gaussian prior density case
is addressed.

Proposition 3 Let J denote the Fisher Information regard-
ing the clustered decentralized random parameter estimation
problem. When prior fθ(θ) is taken to be Gaussian with mean
μθ and variance σ2

θ
, J is bounded by

J ≥ 2K

π

M∑
m=1

ψm

σm

√
σ2

m + σ2
θ

exp

(
− Δ2

2(σ2
m + σ2

θ
)

)
+

1

σ2
θ

(16)
whereΔ = τ − μθ .

Proof Sketch 3 The proof utilizes the (tight) chernoff bound
and integration by parts and is omitted here for brevity.

Note that the minimum of the derived bound is achieved
when Δ = 0, i.e. τ = μθ , which is in agreement with the
results presented in Section 3 and previous literature consid-
ering the simpli ed single parameter case [1,3,4]. In addition,
the derived bound is corroborated with numerical examples in
Section 5 that show the bound to be very tight. Consequently,
the bound provides a good theoretical means for characteriz-
ing the performance of decentralized MAP estimators operat-
ing in a bandwidth–constrained WSNs.

5. NUMERICAL EXAMPLES

This section reports the variance of the ML estimator deter-
mined through simulations, and contrast it with the analytical
results derived in previous sections, i.e. the variances of ML
is compared against the CRLB. The derived analytical MAP
estimator results are also compared with simulation results in
the following.

Consider a WSN that is composed of three clusters, i.e.,
M = 3, with channel parameters σ1 = 1, σ2 = 2 and
σ3 = 1.5. The sensor thresholds are τ = 0 and the source
parameter to be estimated is set to unity, i.e., θ = 1. The clus-
ter sizes are the same for each cluster, i.e., #(C) = #(C1) =
#(C2) = #(C3) and the cluster size is varied in the range of
#(C) = [100, 105, . . . , 1000] during simulations. The output
variance of the optimal ML (circles) is plotted in Fig. 1 (a)
along with the CRLB (solid). Note that each result is an en-
semble average of 5000 trials. The ML estimator provide per-
formance close the CRLB. Similar experiments are also run
for the optimal τ = θ case, the results of which is plotted in
Fig. 1 (b).

Next, consider the MAP estimator operating on simulated
sensor network de ned byM = 3, σ1 = 1, σ2 = 2, σ3 = 1.5,
μθ = 0. The performance of the MAP estimator is plotted in
plotted in Fig. 2 for the cases of (a) varying number of sensors
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Fig. 1. Illustration of ML (circles) estimator output variance
along with the CRLB (solid) where M = 3, σ1 = 1, σ2 = 2,
σ3 = 1.5, θ = 1 (top:) τ = 0 and (bottom:) τ = 1.

and σθ = 0.5, (top:) τ = 0 and (bottom:) τ = 0.5, and (b)
varying σθ and #(C) = 500, (top:) τ = 0 and (bottom:)
τ = 0.5. Simulated MSE values are tightly scattered around
the analytical values, corroborating the theoretical bound. As
expected, the MSE of the MAP estimator based on clustered
binary observations increases with σθ . Also, the simulated
MSEs closely follow the analytical results.

6. CONCLUSIONS

The homogeneous wireless sensor network (WSN) model is
extended to admit clusters of environments re ecting the vary-
ing levels of noises in large–scaled WSNs. The estimation of
a source parameter is approached from a maximum likelihood
(ML) perspective. The Cramer Rao Lower Bound (CRLB)
for any unbiased estimator operating in a clustered WSN en-
vironment is derived. Noting that the source parameter cannot
be found in a closed–from, we resort to a numerical search,
namely Newton’s algorithm. Although numerically determined,
the estimate is guaranteed to converge to the optimal solution
since it is shown that the log–likelihood function is concave.
Also considered here is the estimation of parameter, with a
priori information, approached from a Maximum A Poste-
riori (MAP) perspective, and a bound on the corresponding
Fisher Information. Numerical experiments are presented to
evaluate and compare the performances of the proposed esti-
mators.
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