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Abstract—We consider distributed parameter estimation in a
wireless sensor network, where due to bandwidth constraint,
all sensor nodes have to quantize their observations and send
quantized data to a fusion center. We consider the case where
each sensor can send only one bit of information. In such a case,
the achievable estimation performance is critically dependent on
the choice of the one-bit quantizer used at the sensor nodes to
perform quantization; it is also known that a fixed quantizer
does not perform well, in particular when the quantization
threshold is away from the unknown parameter to be estimated.
In this paper, we propose a new distributed adaptive quantization
scheme by which each individual sensor node dynamically adjusts
the threshold of its quantizer based on earlier transmissions
from other sensor nodes. We develop the maximum likelihood
estimator (MLE) and derive the Cramér-Rao bound (CRB)
associated with our distributed adaptive quantization scheme.
Numerical results show that our approach does not suffer
from the drawback of the fixed quantization approach and
outperforms the latter.
Index Terms—Wireless sensor networks, distributed estima-

tion, adaptive quantization.

I. INTRODUCTION

Consider a wireless sensor network that is composed of N
spatially distributed sensor nodes. Each sensor node makes a
noisy observation of an unknown parameter θ that is described
by

xn = θ + wn, n = 1, 2, . . . , N, (1)

where N denotes the number of sensors and wn the sensor
noise which is assumed independent and identically distributed
with respect to n. The problem of interest is to estimate θ from
the observed signals {xn}.
The traditional approach is based on centralized processing.

In particular, the unquantized sensor data xn are first transmit-
ted to a fusion center (FC), and then a centralized estimation
algorithm is run at the FC to find an estimate of θ, such as
the sample mean estimator:

θ̂ =
1
N

N∑
n=1

xn. (2)

The above approach, however, is bandwidth inefficient. In a
wireless sensor network, all sensor nodes have to share the
communication bandwidth and, in addition, their battery life is
limited. As such it may be impractical to send all unquantized
data back to the FC.
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An alternative approach is to utilize distributed process-
ing, whereby sensor nodes first quantize xn and send back
quantized data which are next used at the FC to form an
estimate of θ. A number of studies have considered such a
distributed estimation approach, including stochastic methods
that model θ as a random parameter and require knowledge
of the joint distribution of θ and the observed signals (see,
e.g., [1]), as well as deterministic methods that model θ
as a deterministically unknown parameter. The latter can be
further classified into methods that require knowledge of the
conditional distribution of xn (conditioned on θ), i.e., the
likelihood function, (e.g., [2], [3]), and methods that do not
(e.g., [4]). Details of these distributed estimation methods are
found in [1], [2], [3], [4] and references therein.
This paper addresses the problem of distributed estimation

for wireless sensor networks that have the stingiest bandwidth
constraint: each sensor is allowed to transmit only 1 bit of
information to the FC. The achievable estimation performance
at the FC can be shown to critically depend on the choice of
the 1-bit quantizer that is used to quantize the data at each
sensor node [3]. One strategy is to choose a fixed quantizer
for all sensor nodes with a fixed quantization threshold τ
[2]. The optimum choice of τ , however, depends on θ which
is unknown. It is found that if τ is set away from θ, the
best achievable estimation performance at the FC has an
exponentially increasing estimation error in |τ − θ| [3]. An
alternative strategy is to use a set of thresholds {τk}, and each
τk is used in a fraction ρk of the N sensor nodes [3], in the
hope that some of the thresholds are close to the unknown θ.
The problem is that finding the best set of {τk, ρk} is involved.
To deal with the above difficulty, we present a new dis-

tributed adaptive quantization scheme by which each indi-
vidual sensor node dynamically adjusts the threshold of its
quantizer based on earlier transmissions from other sensor
nodes. Our scheme is in essence a distributed Delta mod-
ulation technique, whereby each sensor node accumulates
earlier transmissions from other sensor nodes, and uses the
accumulated value sn−1 as the threshold for its 1-bit quantizer.
The accumulated value sn−1 can be shown to converge (with
respect to n) around the unknown θ. Based on our proposed
adaptive quantization scheme, we develop the maximum like-
lihood estimator (MLE) that can be used at the FC to find the
ML estimate of θ, and the Cramér-Rao bound (CRB) that tells
about the best achievable estimation performance (among all
unbiased estimators) for the proposed adaptive quantizer.
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The rest of the paper is organized as follows. We first briefly
review the fixed quantization scheme [2] and the associated
MLE and CRB in Section II. Our distributed adaptive quan-
tizer and the corresponding MLE and CRB are presented in
Section III. Numerical results, comparisons, and discussions
are contained in Section IV.

II. FIXED QUANTIZATION APPROACH

The fixed quantization approach is to apply a common
threshold τ for all sensors and generate quantized data bn as
follows [2]:

bn = sgn(xn − τ), n = 1, 2, . . . , N, (3)

which are sent to the FC. The probability mass function (PMF)
of the binary random variable bn is given by

P (bn; θ) = [Fw(τ − θ)](1+bn)/2[1−Fw(τ − θ)](1−bn)/2, (4)
where Fw(x) denotes the complementary cumulative density
function (CDF) of wn. Since {bn} are independent and iden-
tically distributed, the log-PMF or log-likelihood function is

LFQ(θ) � ln[P (b1, . . . , bN ; θ)]

=
N∑
n=1

{(
1 + bn
2

)
ln[Fw(τ − θ)]

+
(
1− bn
2

)
ln[1− Fw(τ − θ)]

}
,

(5)

where the subscript FQ is used to denote fixed quantization.
The MLE is given by

θ̂FQ = argmax
θ
LFQ(θ). (6)

The CRB based on the above fixed quantization is [2] (also
see [3]):

CRBFQ(θ) =
Fw(τ − θ)[1− Fw(τ − θ)]

Np2w(τ − θ)
, (7)

where pw(x) denotes the probability density function (PDF)
of wn. We see that CRBFQ(θ) depends on the the threshold
τ . Furthermore, it has been found that the CRB increases
exponentially with |τ − θ| [3].
III. DISTRIBUTED ADAPTIVE QUANTIZATION APPROACH

We first introduce our distributed adaptive quantization
scheme, followed by our development of the MLE and CRB.

A. Adaptive Quantization

We assume that the sensors share the communication chan-
nel on a time-sharing basis (e.g., each sensor is polled by the
FC), so that sensor 1 transmits first, followed by sensor 2,
and so on and so forth. The 1-bit quantizer at sensor 1 uses a
zero-threshold to generates b1:

b1 = sgn{x1}. (8)

Then, b1 is sent (i.e. broadcast) to the FC as well as the other
N − 1 sensors. After receiving b1, sensor 2 computes s1 =

Δb1, where Δ is a parameter of user choice, and generates
b2:

b2 = sgn{x2 − s1} (9)

where Δ is a design parameter. In general, for sensor n, it
first forms a cumulative sum:

sn−1 = Δ
n−1∑
k=1

bk, (10)

and then it uses sn−1 as a threshold for quantization:

bn = sgn{xn − sn−1}. (11)

One can immediately recognize that the above process is
reminiscent of the Delta modulation, but is implemented is
a distributed fashion.

B. MLE

Different from the fixed quantization approach, the binary
data bits b1, b2, . . . , bN generated by our distributed adaptive
quantization are no longer independent and identically dis-
tributed. The conditional PMF of bn is given by

P (bn|b1, . . . , bn−1; θ) = [Fw(sn−1 − θ)](1+bn)/2
× [1− Fw(sn−1 − θ)](1−bn)/2.

(12)

Using conditional probabilities, we can write the joint PMF
of b1, b2, . . . , bN as

P (b1, . . . , bN ; θ)
=P (b1; θ)P (b2|b1; θ) . . . P (bN |b1, . . . , bN−1; θ)

=
N∏
n=1

P (bn|b1, . . . , bn−1; θ)

=
N∏
n=1

P (bn|sn−1; θ)

(13)

It follows from (12) and (13) that the log-likelihood function
is given by

LAQ(θ) =
N∑
n=1

{(
1 + bn
2

)
ln[Fw(sn−1 − θ)]

+
(
1− bn
2

)
ln[1− Fw(sn−1 − θ)]

}
,

(14)

where the subscript AQ is used to denote our adaptive quan-
tization. As such, the MLE is given by

θ̂AQ = argmax
θ
LAQ(θ). (15)

C. CRB

Noting that F ′w(x) � ∂Fw(x)
∂x = −pw(x), we can quickly

verify that the first- and second-order derivatives of LAQ(θ)
are

∂LAQ(θ)
∂θ

=
N∑
n=1

{(
1 + bn
2

)
pw(sn−1 − θ)
Fw(sn−1 − θ)

−
(
1− bn
2

)
pw(sn−1 − θ)

1− Fw(sn−1 − θ)
}
,

(16)
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∂2LAQ(θ)
∂θ2

=
N∑
n=1

{(
1 + bn
2

)(
p′w(sn−1 − θ)
Fw(sn−1 − θ) −

p2w(sn−1 − θ)
F 2w(sn−1 − θ)

)

−
(
1− bn
2

)(
p′w(sn−1 − θ)[

1− Fw(sn−1 − θ)
]

+
p2w(sn−1 − θ)[

1− Fw(sn−1 − θ)
]2
)}

�
N∑
n=1

A(bn, sn−1, θ),

(17)

where p′w(x) � ∂pw(x)
∂x . The Fisher information for the

estimation problem is given by (e.g., [5])

JAQ(θ) =E
{
∂2LAQ(θ)
∂θ2

}

=
N∑
n=1

Ebn,sn−1{A(bn, sn−1, θ)},
(18)

where Ebn,sn−1 denotes the expectation with respect to the
joint distribution of bn and sn−1. Since

P (bn, sn−1; θ) = P (sn−1; θ)P (bn|sn−1; θ), (19)

we can write

JAQ(θ) =
N∑
n=1

Esn−1

{
Ebn|sn−1{A(bn, sn−1, θ)}

}
, (20)

where Ebn|sn−1 denotes the expectation with respect to the
conditional distribution P (bn|sn−1; θ). From (12), we have

Ebn|sn−1

{
A(bn, sn−1, θ)

}
=Fw(sn−1 − θ)A(1, sn−1, θ)
+ [1− Fw(sn−1 − θ)]A(−1, sn−1, θ).

(21)

To carry out the outer expectation in (20), we need find out the
distribution of sn−1, which is addressed in the next section.
Once we have the Fisher information JAQ(θ), the CRB is given
by

CRBAQ(θ) = − 1
JAQ(θ)

. (22)

D. PMF of sn
Note that sn is a random walk process with time-varying

probabilities of the increment of Δ and −Δ. Also note that
s1 ∈ {±Δ}, s2 ∈ {−2Δ, 0, 2Δ}, s3 ∈ {−3Δ,−Δ,Δ, 3Δ},
s4 ∈ {−4Δ,−2Δ, 0, 2Δ, 4Δ}, and so on and so forth. In
general, we have

s2k−1 ∈ {±Δ, . . . ,±(2k − 1)Δ}, k = 1, 2, . . .
s2k ∈ {0,±2Δ, . . . ,±2kΔ}, k = 1, 2, . . .

(23)

Although finding a closed-form expression for the PMF of
sn seems cumbersome, it can be computed rather straightfor-
wardly by recursive calculation. To facilitate presentation, we
introduce the following notation

Pi,j � Pr(si = jΔ). (24)

To initialize the recursion, we first compute the distribution of
sn for n = 2k − 1 = 1 (i.e., k = 1):

P1,1 = Pr(x1 > 0) = Fw(−θ)
P1,−1 = Pr(x1 < 0) = 1− Fw(−θ)

(25)

Then, the recursion for even n, i.e., n = 2k, k = 1, 2, . . . , is
given by

P2k,2l =P2k−1,2l+1 Pr(x2k < (2l + 1)Δ)
+ P2k−1,2l−1 Pr(x2k > (2l − 1)Δ)

=
[
1− Fw((2l + 1)Δ− θ)]P2k−1,2l+1
+ Fw((2l − 1)Δ− θ)P2k−1,2l−1

l = −k,−k + 1, . . . , k − 1, k,

(26)

where the boundary probabilities are zero: P2k−1,2k+1 =
P2k−1,−2k−1 = 0. In essence, the above equation says that if
the accumulation s2k takes a value of 2lΔ, it is either because
the previous accumulation s2k−1 takes a value of (2l + 1)Δ
and in conjunction the observation x2k is less than (2l+1)Δ,
or s2k−1 takes a value of (2l − 1)Δ and in conjunction x2k
is greater than (2l − 1)Δ.
Likewise, the recursion for odd n, i.e., n = 2k − 1, k =

2, 3, . . . , is given by

P2k−1,2l−1 =P2k−2,2l Pr(x2k−1 < 2lΔ)
+ P2k−2,2l−2 Pr(x2k−1 > (2l − 2)Δ)

=
[
1− Fw(2lΔ− θ)]P2k−2,2l
+ Fw((2l − 2)Δ− θ)P2k−2,2l−2

l = −k + 1,−k + 2, . . . , k − 1, k,
(27)

where the boundary probabilities are zero: P2k−2,2k =
P2k−2,−2k = 0.
With the probabilities Pi,j obtained recursively as above,

the PMF of sn for odd and even values of n can be expressed
as

P (s2k−1; θ) =
k∑

l=−k+1
P2k−1,2l−1I(s2k−1 − (2l − 1)Δ),

P (s2k; θ) =
k∑

l=−k
P2k,2lI(s2k − 2lΔ),

(28)

where I(x) denotes the indicator funciton:

I(x) =

{
1, x = 0,
0, x �= 0. (29)

IV. NUMERICAL RESULTS AND DISCUSSIONS

To illustrate the performance of the proposed distributed
adaptive quantization and estimation scheme, we consider
the case where the sensor noise {wn} are independent and
identically distributed Gaussian random variables with zero
mean and variance σ2 = 1. We compare the fixed quantization
approach described in Section II, our adaptive quantization
approach, and the clairvoyant approach that uses unquantized
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Fig. 1. CRBs of distributed estimation with fixed, adaptive, and no quantization versus N , the number of sensor nodes N , when σ2 = 1, and Δ = 0.1. (a)
θ = 1. (b) θ = 2. (c) θ = 3.

data (cf. the sample mean estimator (1)). Although not de-
sirable due to its bandwidth inefficiency, the clairvoyant ap-
proach provides a benchmark (lower bound) on the achievable
performance with quantized data. The CRB for the clairvoyant
approach is well known, which is given by

CRBNQ(θ) =
σ2

N
, (30)

where the subscript NQ denotes that no quantization is used.
Figures 1(a) to 1(c) compare the CRB of the above three

approach when θ = 1, 2, and 3, respectively. For the fixed
quantization approach, we set the threshold τ = 1, and for
our adaptive quantization approach, we choose Δ = 0.1. As
we can see, the fixed quantization approach is sensitive to
the value of θ or, equivalently, the value of τ ; as the two
become more apart from each other (even not too far apart),
the performance of the fixed quantization approach degrades
significantly.

On the other hand, our adaptive quantization scheme does
not have the above problem. In addition, in all three cases
considered, it outperforms the fixed quantization scheme and
is closer to the clairvoyant approach.
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