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ABSTRACT

We consider an estimation network of many distributed

sensors, where each senor takes a noisy measurement of some

unknown parameter. Due to energy limitation, the network

selects only a subset of sensors for data fusion as long as the

distortion is tolerable. In this paper, we present a sampling

framework based on linear minimum variance unbiased esti-

mation. The framework enables the system to achieve a de-

sired estimation fidelity level and to improve the network life-

time. Simulations illustrate the effectiveness of the proposed

sampling schemes.

Index Terms— Sampling, estimation, minimum mean-

squared error, and sensor networks

1. INTRODUCTION

A number of wireless sensor networks (WSNs) are being de-

veloped to estimate physical phenomena over time and space

in noisy environments [1]. The associated fusion center con-

solidates data collected from sensors to reconstruct the state

of nature, e.g., estimating a field variable given the sensor ob-

servations. Some key issues in such a setting are the fidelity

at which the field variable can be estimated by the data fusion

center and the cost of operating the sensor network.

Because wireless sensor devices are usually battery pow-

ered, energy efficiency is critical for sensor networks and has

a direct influence on the system lifetime. It is necessary to se-

lect a group of sensors for data fusion and set the other nodes

inactive (or sleeping) so as to conserve energy. Consequently,

the design of sensor networks naturally requires the selection

of a subset of sensors that are sufficient to meet the fidelity

constraint. The goal of this paper is to propose a procedure to

select a group of sensor nodes that can maximize the system

lifetime while satisfying a desired fidelity.

The problem of sensor selection has been investigated for

various purposes. A recent work in [2] proposed a maximum

mutual information algorithm where only a single sensor is
active at any given time and it passes its measurement to the

most informative sensor which will be the next active node. In

[3], the authors used a local greedy strategy to select the next
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most informative sensor node to reduce information entropy

for target location. The problem of selecting sensors to min-

imize error in estimating the target position was investigated

for a bounded uncertainty sensing model in [4].

In this paper, we present an energy efficient sampling frame-

work based on linear minimum variance unbiased estimation.

Each cycle, the fusion center selects a subset of sensors to

estimate an unknown parameter. The proposed sampling al-

gorithm, called innovations sensor sampling (ISS), is to se-

lect the sensors that are most informative so that the fidelity

requirement can be satisfied with no more sensors than neces-

sary. Furthermore, we show that by taking energy consump-

tion into consideration, the energy load can be evenly dis-

tributed among sensors to achieve fairness. The performance

of these two schemes are evaluated through simulations.

2. ESTIMATION IN SENSOR NETWORKS

Consider a WSN with N sensor nodes and a fusion center.
Each sensor has the capability to observe a certain signal in

the field and send data to the fusion center. To ensure a de-

sired SNR level at the receiver, the measurement of sensor i
should be transmitted to the fusion center at a power level pi
proportional to dαi , where di is the distance between sensor i
and the fusion center and α (2 < α < 6) is the pathloss coef-
ficient. We assume that the wireless channels from sensors to

the fusion center are scheduled by TDMA so that there is no

collision or interference. From the fusion center to sensors,

there is a separate broadcast channel through which the sam-

pling decision is sent back to the sensors for activity control.

Each sensor makes observations of an unknown deter-

ministic vector θ ∈ Rm×1, which is distorted by a matrix
Hi ∈ Rni×m and corrupted by additive noise, i.e.,

yi = Hiθ + vi i = 1, 2, . . . , N (1)

Equation (1) can be represented as y = Hθ + v, where
y = col {y1,y2, . . . ,yN}, H = col {H1,H2, . . . ,HN},
and v = col {v1,v2, . . . ,vN}. The measurement noise v is
zero-mean Gaussian and has covariance matrix C, i.e., v ∼
N (0,C).
Denote by An = {i1, i2, . . . , in} the sampling decision,

i.e., the index set of selected sensors. Then, the estimator

based on the selected senors is represented as θ̂
(
yAn

)
.
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There are different data fusion functions for estimation

purposes. A common approach is to restrict the estimator to

be a linear function of the data and to find the linear estimator

that is unbiased and has minimum error. This estimator, re-

ferred to as the linear minimum-variance unbiased estimator

[5], can be determined with knowledge of only the first and

second moments of the data statistics. We will derive the esti-

mator and its associated error under a sampling decision An,

so it is useful to define some data structures.

Definition 1 A partial vector of y dictated byAn, denoted by
yAn

, is a vector that contains entries yi if i ∈ An.
For example, a partial vector of col{y1,y2,y3} dictated

by {1, 3} is col{y1,y3}. Similarly, we can define the partial
matrix as follows.

Definition 2 A partial matrix of the N × 1 block matrix H
dictated by An, denoted by HAn

, is a matrix that contains
block matrices H i if i ∈ An; a partial matrix of the N ×N
block matrix C dictated by An, denoted by CAn

, is a matrix
that contains block matrices Cij if i ∈ An and j ∈ An.
Then, for any sampling decision An = {i1, i2, . . . , in},

HAn
= col {H i1 ,Hi2 , . . . ,H in} and the covariance ma-

trix CAn
is the partial matrix selected from C with rows and

columns corresponding to {i1, i2, . . . , in}.
Using the linear data model in (1), the minimum-variance

unbiased estimator (m.v.u.e.) of θ using yAn
is given by [5]

θ̂
(
yAn

)
=

(
HT
An

C−1An
HAn

)−1
HT
An

C−1An
yAn

(2)

and the resulting minimum mean-squared error (MMSE) is

D (An) =
(
HT
An

C−1An
HAn

)−1
(3)

The MMSE should be less than or equal to some desired dis-

tortion, i.e., An should be selected such that Tr [D (An)] ≤
D0.

3. INNOVATIONS-BASED SAMPLING

In this section, we present a sampling framework based on in-

novations. At the beginning of each period, the fusion center

starts with a seed node i1, i.e., A1 = {i1}. One may choose
the seed node according to different criteria. A simple cri-

terion is to choose the sensor that has the most energy level.

The fusion center then iteratively adds one sensor into the set

of selected sensors until the desired fidelity is achieved. The

fusion center activates the selected sensors for estimation and

powers them off at the end of the period. When the next pe-

riod begins, a new group of sensors will be activated and the

procedure repeats until the sensors deplete their energy.

3.1. Uncorrelated Noise

If the noises were spatially uncorrelated, i.e., Ckl = 0 for
k �= l, then (3) becomes

D (An) =

(
n∑

k=1

HT
ik
C−1ikik

Hik

)−1
(4)

This expression decouples the contribution of each sensor to

the total MMSE value DAn
. Each term HT

ik
C−1ikik

Hik has

the essential properties of an information measure in that it is

1. non-negative definite,

2. and additive for independent observations.

Intuitively, the more information sensor ik has (i.e., the larger
HT

ik
C−1ikik

Hik is), the lower its contribution to the MMSE.

This suggests that at each step the network should choose

the most informative sensor in order to maximally reduce the

MSE. Specifically, assume that nodesAn−1 = {i1, i2, . . . , in−1}
have been selected. Then, at step n we would choose the
sensor in whose information measure H

T
inC

−1
in
Hin is the

largest. In this way, the resulting DAn
will be the smallest

compared with other choices for in.

3.2. Correlated Noise

However, the noises are generally spatially correlated. In this

case, the contributions of the individual sensors are coupled in

the MMSE expressionDAn
in (3). We thus need to develop a

procedure to find the most informative sensor with respect to

the previous selected ones. To achieve this goal, we start by

whitening the observation data subject to the order dictated

by the choice of sensors, and then obtain a set of transformed

measurements with uncorrelated noises.

Suppose that we have already selected n− 1 sensors, i.e.,
An−1 = {i1, i2, . . . , in−1}. For any in /∈ An−1, we define
its innovation [5, 6] as

ein
Δ= yin − ŷin|An−1

(5)

where

ŷin|An−1
= Hinθ + v̂in|An−1 (6)

with v̂in|An−1 being the projection of vi onto the affine space

of previous measurements, denoted byL{yi1 ,yi2 , . . . ,yin−1
}.

The quantity ein in (5) denotes the new information contained

in sensor in and not in any of the previous measurements
{yi1 ,yi2 , . . . ,yin−1

}.
Now note that v̂in|An−1 is given by

v̂in|An−1 = Bin|An−1C
−1
An−1

vAn−1 (7)

where

Bin|An−1 =
(
Cini1 Cini2 . . . Cinin−1

)
(8)

Combining (1), (5), (6), and(7) gives

ein = vin − v̂in|An−1

=
(
−Bin|An−1C

−1
An−1

I
)(

vAn−1

vin

)
(9)

It can be verified that ein⊥vj for any j ∈ An−1. Thus, the
matrix

P in|An−1

Δ=
(
−Bin|An−1C

−1
An−1

I
)

(10)
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projects vin onto a space orthogonal toL{vi1 ,vi2 , . . . ,vin−1}.
Given a sampling decision An, the corresponding innovation

process {eik}nk=1 has the important property

E(eike
T
il
) =

{
0 ik �= il
Qik

otherwise
(11)

whereQik
is the covariance matrix of eik and has the form

Qik = P ik|Ak−1

(
CAk−1 BT

ik|Ak−1

Bik|Ak−1 Cikik

)
P T

ik|Ak−1
(12)

We can now introduce a transformed measurement of sensor

in as

zin
Δ= P in|An−1

(
yAn−1

yin

)
(13)

i.e.,

zin = Gin|An−1θ + ein (14)

where

Gin|An−1 = P in|An−1

(
HAn−1

Hin

)
(15)

Then, the m.v.u.e. of θ given {zi1 ,zi2 , . . . ,zin} coincides
with the m.v.u.e. of θ given {yi1 ,yi2 , . . . ,yin}. The advan-
tage of working with the transformed quantities {zik}nk=1 is

that the noises {eik}nk=1 in the model (13) are now uncorre-

lated. Thus, for a given set of observations An, the MMSE is

given by

D (An) =
(
HT
An

C−1An
HAn

)−1

=

(
n∑

k=1

GT
ik|Ak−1

Q−1ik
Gik|Ak−1

)−1
(16)

3.3. Innovations Sensor Selection (ISS)

To meet the fidelity requirement with a minimum number of

measurements, the algorithm chooses a group of sensors, each

of which has the most new information with respect to others.

Specifically, we define a utility matrix as

U in|An−1

Δ= GT
in|An−1

Q−1in
Gin|An−1 (17)

which, as mentioned before, has the essential properties of an

information measure. Now recall that the set of sensor obser-

vations An−1 has an MMSE DAn−1 = Tr [D (An−1)]. Ac-
cording to (16), the MMSE with measurements {An−1, in}
can be written as

DAn
= Tr

[(
D−1 (An−1) +U in|An−1

)−1]
(18)

Then, we can define a utility function as the difference be-

tween DAn−1 and DAn
, i.e.,

uin|An−1

Δ= DAn−1 −DAn

=Tr
[
D (An−1)−

(
D−1 (An−1) +U in|An−1

)−1]

The function uin|An−1 serves as a measure of the new infor-

mation provided by sensor in’s observation.
At each step n, the fusion center then selects a sensor that

has the maximum utility function, i.e.,

in = arg max
i/∈An−1

ui|An−1 (19)

The algorithm successively adds a sensor that has the most

new information into the set of selected sensors until the de-

sired estimation fidelity D0 is achieved.

3.4. Fairness Considerations

The sampling scheme should avoid the hot spot problem and

evenly distribute the energy load among the nodes, so that

there are no overly-used nodes that will run out of energy be-

fore the others. To achieve this goal, we propose to incorpo-

rate the residual energy at each sensor in making the sampling

decision.

Denote by pin(t) the amount of energy required for sensor
in to participate in estimation for the t-th cycle. We can define
a net utility function for sensor in as its utility minus energy
cost, i.e.,

fin|An−1 = uin|An−1 − γin(t)pin(t) (20)

where γin(t) is the price coefficient; it can be adapted to the
current residual sensor energy as

γin(t) =
β

Ein(t)
(21)

where β is a constant and Ein(t) represents the residual en-
ergy of sensor in. The form (21) implies that if sensor in has
a large residual energy level, it has a low price; on the other

hand, when the sensor has little energy left, selecting this sen-

sor will result in a high cost. Instead of using the criterion in

(19), we now use the net utility function fin|An−1 .

Suppose there is a seed sensor initially, i.e., A1 = {i1}.
At each step n, the algorithm chooses a sensor that has the
maximum net utility given the previous selected sensor ob-

servations An−1, i.e.,

in = arg max
i/∈An−1

fi|An−1 (22)

The algorithm successively adds the sensor measurement into

the set of selected sensors until the mean-squared error is

less than or equal to the desired estimation fidelity level, i.e.,

DAn
≤ D0.

4. SIMULATIONS

In this section, we experimentally evaluate the effectiveness

of the proposed sampling scheme through simulations. We

randomly generate N = 100 sensors within a unit square
[0, 1] by [0, 1] with the fusion center located at

(
1
2 ,

1
2

)
. Con-

sider a simple linear model yi = θ+vi. The covariance matrix
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Fig. 1. Average active sensors vs. estimation fidelity.
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Fig. 2. Average active sensors vs. estimation fidelity.

C is randomly generated according to the spatial correlation
model

Cij =
{
σ2i i = j
σiσj exp

(−5 d2ij) i �= j (23)

where σ2i = 0.01 + 0.99χ2(1), with χ2(1) generated by the
Chi-square distribution of degree 1 and the correlation is an
exponential function of the distance between nodes. Suppose

that each sensor initially has a unit of energy, and it consumes

pi = 0.001 + d3.5i unit of energy if it participates in estima-

tion; otherwise, it neither measures the signal nor transmits

any information. The network keeps operating until the sam-

pling algorithm cannot produce any feasible solution to meet

the fidelity requirement D0 due to insufficient energy in the

sensors. Figures 1 and 2 respectively illustrate the operational

lifetime and expected active sensors in each cycle with re-

spect toD0. The results show that the proposed schemes out-

perform a random selection algorithm, in which sensors are

selected at random. In Fig. 3, it can be seen that the energy

variance of the fair algorithm is considerably smaller than ISS

due to the even distribution of energy load.
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Fig. 3. The variance of residual energy at the sensors with
β = 100.

5. CONCLUSION

In this paper, we proposed a framework for energy efficient

sampling for estimating a field variable in sensor networks.

The framework suggests that energy-efficiency can be achieved

through reducing the number of active sensors. Furthermore,

the energy load can be evenly distributed among all sensors

in order to achieve fairness. The performance of the sampling

scheme is evaluated through simulation. Some interesting ex-

tensions are worth further investigation for important practi-

cal issues such as finite-bit communication, transmission er-

rors, distributed implementation, and reliable communication

protocols.
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