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ABSTRACT
The achievable rate of a Gaussian multiple relay channel with lin-
ear relaying functions is derived here. With Linear relaying, relays
transmit (on every channel use) a causal linear combination of their
past received inputs. In this paper, the optimum temporal covariance
of the signal transmitted by the source is derived and linear relaying
functions proposed. Results show that Linear relaying outperforms
all known relaying techniques for relay channels and generates the
tightest lower bound on the capacity of the multiple relay channel.

Index Terms— Multiple relay channel, linear relaying func-
tions.

1. INTRODUCTION

The wireless multiple relay channel (MRC) consists of a single source-
destination pair aided in its communication by N > 1 wireless re-
lays. This architecture is shown to improve capacity (and reliability)
of wireless channels when properly allocating network resources [1].

Capacity of MRC is still an open problem for the field of In-
formation Theory. However, it has been analyzed and bounded by
means of the achievable rates of the four known forwarding tech-
niques for relay channels (and their superposition and time-sharing),
namely: 1) Decode-and-forward. It was presented in [2] for one
relay node and extended to MRC in [1]. Constructed through block-
Markov encoding and forward decoding, it is shown to be spectrally
inefficient due to signal regeneration at the relay node. 2) Amplify-
and-forward, where relay nodes transmit an amplified version of the
signal received from the source. Its main drawback is the noise am-
plification in the low SNR regime [3]. 3) Partial decoding, where
relay nodes just decode and retransmit a part of the source message.
Proposed in [2] for one relay, it is extended to synchronous and asyn-
chronous MRC in [4], showing significant capacity gains. It is the
highest known achievable rate for the MRC. Finally, 4) Compress-
and-forward. It was also introduced in [2], and consists of relays
retransmitting a compressed version of their received input. It is ex-
tended to the MRC in [1], and claimed to be spectrally inefficient in
the high SNR regime in [5].

The aim of this paper is to contribute a new (and tighter) achiev-
able rate for the MRC, based upon Linear Relaying at the relay nodes
[6]. With Linear Relaying, relays send (on every channel use) a lin-
ear combination of their past received signals1 (referred to as linear

∗This work was partially supported by the European Comission under
project IST-4027402 (WIP) and by Generalitat de Catalunya under grant
SGR-2005-00690.

1Notice that amplify-and-forward is just a particular case of Linear Re-
laying.

Fig. 1. Multiple relay channel with linear relaying functions.

relaying function). In such a set up, two parameters can be optimized
in order to achieve higher capacity: i) the linear relaying functions at
the relay nodes, and ii) the temporal covariance of the signal trans-
mitted by the source. Our contribution analyzes a MRC with trans-
mit and receive channel knowledge at all network nodes, and overall
energy constraint. It derives the optimum temporal covariance ma-
trix for the source signal, and proposes suboptimum linear relaying
functions that outperform all previously known relaying schemes.
Indeed, results show a capacity increase of up to 1 bps/Hz with re-
spect to well known amplify-and-forward and decode-and-forward
architectures.

The remainder of this paper is organized as follows: Section 2
introduces signal model and defines the achievable rate. In Section
3, we derive the optimum covariance at the source and in Section 4
we propose the suboptimum relaying functions. Finally, Section 5
depicts numerical results and Section 6 summarizes conclusions.

2. SIGNAL MODEL AND CAPACITY

We consider a wireless MRC with a source node s, a destination
node d, and a set of N relay nodes2 (See Fig. 1). Wireless channels
among nodes are time-invariant, memoryless, and modelled with a
complex coefficient, where a denotes the complex channel between
source and destination, and bi and ci the complex channel from
source to relay i, and relay i to destination, respectively.

During κ uses of the channel, the source transmits a sequence

of random symbols Xκ
s =

[
X1

s, · · · ,Xκ
s

]T ∈ Cκ, which is received
at both relays and destination under additive noise. The received
sequence at relay i ∈ {1, · · · ,N} is written as:

Yκ
i = bi ·Xκ

s + Zκ
i , (1)

2All network nodes have only one antenna

III  5051424407281/07/$20.00 ©2007 IEEE ICASSP 2007



being Zκ
i =

[
Z1
i , · · · ,Zκ

i

]T ∈ Cκ the noise sequence. As men-
tioned earlier, the set of relays aids the source-destination communi-
cation by retransmitting a causal linear combination of their received
input. Hence, relay i ∈ {1, · · · ,N} transmits a sequence of κ sym-

bols Xκ
i =

[
0,X2

i , · · · ,Xκ
i

]T ∈ Cκ, where

Xκ
i = Di ·Yκ

i

= Di · (bi ·Xκ
s + Zκ

i ) , (2)

where Di ∈ Cκ×κ is the linear relaying matrix of relay i, de-
fined strictly lower triangular to preserve causality in the system (i.e.,
[Di]p,q = 0 for p ≤ q, with p row and q column). Then, considering
the signal transmitted by source and relays, the received sequence at
the destination node reads

Yκ
d =

(
a · I +

N∑
i=1

biciDi

)
·Xκ

s +

(
Zκ

d +

N∑
i=1

ciDiZ
κ
i

)
. (3)

The achievable rate C for such a linear relaying scheme equals the
mutual information between the sequences transmitted and received
by the source and destination, respectively [7]:

C = lim
κ→∞

max
pXκ

s
,D

1

κ
· I (Xκ

s ;Yκ
d ) (4)

with D = [D1, · · · ,DN ]. In this paper, maximization above is
solved for Gaussian channels with an overall power constraint: i)
hereafter, Zκ

s , Zκ
i and Zκ

d are assumed zero-mean, circularly sym-
metric, complex AWGN with power σ2

o . Moreover, ii) the total trans-
mitted power in the network during the κ uses of the channel is con-
strained to κP, i.e,

tr
{
E
{
Xκ

s (Xκ
s )H
}}

+

N∑
i=1

tr
{
E
{
Xκ

i (Xκ
i )H
}}
≤ κP (5)

where E {·} denotes expectation and tr {·} the matrix trace. Mak-
ing use of the signal model in (2), the above constraint reduces to
tr
{
P
(
ΣXκ

s
,D
)}
≤ κP, where ΣXκ

s
∈ Cκ×κ

+ is the covariance of
Xκ

s (semidefinite positive) and

P
(
ΣXκ

s
,D
)

= ΣXκ
s

(
I +

N∑
i=1

|bi|2DH
i Di

)
+ σ2

o

N∑
i=1

DH
i Di. (6)

Following Information Theory arguments in [6], definition (4)
is maximized in AWGN when the signal transmitted by the source
is Gaussian. Hence, the achievable rate (in [bps/Hz]) of the system
remains

C = lim
κ→∞

max
ΣXκ

s
,D

1

κ
· log2

(
det
(
I + HeΣXκ

s
HH

e

))
(7)

s.t. tr
{
P
(
ΣXκ

s
,D
)}
≤ κP , ΣXκ

s
� 0

where

He =
1√
σ2
o

(
I +

N∑
i=1

|ci|2DiD
H
i

)− 1
2
(
a · I +

N∑
i=1

biciDi

)
. (8)

Maximization in (7) is not a convex optimization problem, and thus,
no closed form expressions may be obtained. However, for fixed
κ and fixed set of relaying functions D, optimization is convex on
ΣXκ

s
(as shown in [5] for an optimization problem of the class of

(7)) and, hence, the optimum source covariance matrix (conditioned
onD) can be found. The following section is devoted to the solution
of this maximization.

3. SOURCE COVARIANCE OPTIMIZATION

The achievable rate of a MRC with a fixed set of relaying functions
D = {D1, · · · ,DN} ∈ Cκ×κ is derived in Theorem 1.

Theorem 1 Consider κ uses of the channel. Given a fixed set of
relaying functions D, with SVD-Decomposition He = UΛ

1
2 VH

and Λ = diag([λ1, · · · , λκ]):
i) The achievable rate for the Gaussian multirelay channel reads

C (κ,D) = max
ΣXκ

s

1

κ
· log2

(
det
(
I + HeΣXκ

s
HH

e

))
(9)

s.t. tr
{
P
(
ΣXκ

s
,D
)}
≤ κP , ΣXκ

s
� 0

=
1

κ
·

κ∑
n=1

log2 (1 + λnψn)

where

ψn =

[
1

μ · (1 + φn)
− 1

λn

]+

, φn =

[
N∑
i=1

VH |bi|2DH
i DiV

]
n,n

(10)

κ∑
n=1

[
1

μ
− 1 + φn

λn

]+

= κP− tr

{
σ2
o

N∑
i=1

DH
i Di

}
. (11)

ii) Such rate is achievable with covariance matrix ΣXκ
s

= VΨVH ,
being Ψ = diag([ψ1, · · · , ψκ]).

Proof: Demonstration follows two steps; first, we write the La-
grangian function and the KKT conditions for the problem (9). Later,
we show that the covariance matrix that diagonalizes He (i.e, ΣXκ

s
=

VΨVH with Ψ diagonal) satisfies KKT conditions, hence yielding
to the optimum solution. The Lagrangian for optimization (9) is ex-
pressed as [8]:

L
(
ΣXκ

s
,Ω, μ

)
= log

(
det
(
I + HeΣXκ

s
HH

e

))
+tr

{
ΩΣXκ

s

}
− μ

(
tr
{
P
(
ΣXκ

s
,D
)}
− κP

)
, (12)

where μ and matrix Ω are the Lagrange multipliers for the first and
second constraints, respectively. The KKT conditions for the prob-
lem are

i) μ

(
I +

N∑
i=1

|bi|2DH
i Di

)
−Ω = (13)

HH
e

(
I + HeΣXκ

s
HH

e

)−1
He

ii) μ
(
tr
{
P
(
ΣXκ

s
,D
)}
− κP

)
= 0

iii) tr
{
ΩΣXκ

s

}
= 0

Now, we show that for ΣXκ
s

= VΨVH the KKT conditions (nec-
essary and sufficient for optimality) hold. First, let us multiply both
sides of equality in condition i) in (13) by VH at the left side and by
V at the right, and introduce diagonalizing ΣXκ

s
in KKT’s. The first

condition turns into

i) μ

(
I +

N∑
i=1

VH |bi|2DH
i DiV

)
−VHΩV = (14)

Λ
1
2

(
I + Λ

1
2 ΨΛ

1
2

)−1

Λ
1
2
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Since the right hand side of equality is a diagonal matrix, KKT con-
dition i) holds if and only if

Ω = μ

(
I +

N∑
i=1

|bi|2DH
i Di

)
−VPVH , (15)

where P is diagonal. Furthermore, Ω as defined in (15), satisfies
KKT condition iii) if

P = μ · diag

(
I +

N∑
i=1

VH |bi|2DH
i DiV

)
. (16)

Therefore, defining Φ = diag(
∑n

i=1
VH |bi|2DH

i DiV), KKT’s
reduce to

i) μ · (I + Φ) = Λ
1
2

(
I + Λ

1
2 ΨΛ

1
2

)−1

Λ
1
2 (17)

ii) μ

(
tr

{
Ψ (I + Φ) +

N∑
i=1

σ2
oD

H
i Di

}
− κP

)
= 0

Solving equation i) in (17) over Ψ we derive that

ψn =

[
1

μ · (1 + φn)
− 1

λn

]+

(18)

which introduced in ii) allows to compute μ from

κ∑
n=1

[
1

μ
− 1 + φn

λn

]+

= κP− tr

{
N∑
i=1

σ2
oD

H
i Di

}
. (19)

Hence we have shown that ΣXκ
s

= VΨVH satisfies KKT and, thus,
it is optimum. Plugging it into the determinant in (9) concludes the
proof.

4. SUBOPTIMUM LINEAR RELAYING FUNCTIONS

In previous section, we have derived the optimum covariance matrix
given a set of relaying functions D. In the following, we address the
problem of designing linear relaying matrices. First, from capacity
definition in (7), the achievable rate of the system remains

C = lim
κ→∞

max
D
C (κ,D) . (20)

As mentioned earlier, the above problem is not convex and thus, no
closed form expression on D can be obtained. Moreover, due to
the limit, it is not numerically tractable either. Thus, here we pro-
pose a suboptimum set Dso = {D1, · · · ,DN} ∈ Cκ×κ that out-
performs known achievable rates for the MRC. Let us consider a
relaying scheme where all relay nodes use a weighted version of the
same linear relaying function:

Di = ηiDo (β) , (21)

where Do is defined in terms of an arbitrary parameter β ∈ [0, 1],
which is later optimized (see below). The weighting factors ηi allow
relay nodes to introduce beamforming gain in the system. In this
case, beamforming is carried out considering the equivalent source-
to-destination, through relays, channel gains, i.e., hi = bi·ci. Hence,
defining h = [h1, · · · , hN ], we propose

ηi = ε · h
∗
i

|h| , (22)

where ε = ej·arg(a) in order to coherently add the signals from
source and relays. Next, we define Do (β)

[Do (β)]i,j =

{ √
βκ
κ−1

P
σ2

o
i = j + 1; 1 ≤ j ≤ κ− 1

0 elsewhere.
(23)

where we straightforward notice that tr
{∑N

i=1
σ2
oD

H
i Di

}
= βκP,

and that Do (β) is a generalized amplify-and-forward scheme ex-
tended to κ > 2. Introducing the proposed linear relaying functions
in He definition (8), we obtain:

He (β) =
1√
σ2
o

(
I +

(
N∑
i=1

|ci|2|ηi|2
)

Do (β)DH
o (β)

)− 1
2

×

(|a| · I + |h| ·Do (β)) ej·arg(a). (24)

No closed form expression can be derived for the singular values of
He (β), which have to be evaluated numerically. However, assume

that λn (β) is the (n·κ)th eigenvalue of He (β)He (β)H when κ→
∞, with n ∈ [0, 1]. Then, considering κ→∞ and optimizing over
arbitrary value β, the achievable rate with the proposed suboptimum
set Dso can be computed from Theorem 1 as:

Cso = max
0≤β≤1

∫ 1

0

log2 (1 + λn (β)ψn (β)) dn, (25)

where the integral comes out from the sumatory at the limit, and

ψn (β) =
[

1
μ(β)·(1+φn(β))

− 1
λn(β)

]+
with

φn (β) =

[(
N∑
i=1

|bi|2|ηi|2
)

VH (β)DH
o (β)Do (β)V (β)

]
nκ,nκ

,

∫ 1

0

[
1

μ (β)
− 1 + φn (β)

λn (β)

]+

dn = (1− β) P.

5. NUMERICAL RESULTS

The achievable rate of a Gaussian multiple relay channel (GMRC)
with the linear relaying functions described in section 4 is evalu-
ated here. We assume all channel coefficients within the network as
zero-mean, unitary-power, complex Gaussian random variables (i.e,
Rayleigh distributed fading), and we plot the expected value of the
achievable rate, averaged over the channel distribution. Maximiza-
tion over β in (25) is carried out using exhaustive search.

For comparison, we plot the max-flow-min-cut upper bound (com-
puted in [4]) and the achievable rates of previously known relaying
techniques for the GMRC3: i) Partial Decoding, analyzed in [4] and
shown to achieve4:

CPD = max
1≤n≤N

max
(η,β)

min
{
R
((
|a|2 + β (1− η)∑n

i=1
|ci|2

)
P
σ2

o

)
,

R
(
|bn|2βη

P
σ2

o

1+|bn|2(1−β) P
σ2

o

)
+R

(
|a|2 (1− β) P

σ2
o

)}
,

3We do not include the compress-and-forward technique, developed in
[1] for the MRC, since there is no extension to Gaussian channels in the
literature. We define R (x) = log2 (1 + x).

4We consider the relay nodes ordered following |b1| ≥ · · · ≥ |bN |.
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Fig. 2. Expected achievable rate with linear relaying functions.
Transmit SNR = 5 dB

ii) Decode-and-forward, analyzed in [1] and extended to Gaussian
channels by using equation above with β = 1, i.e,

CDF = max
1≤n≤N

max
η

min
{
R
(
|bn|2η P

σ2
o

)
,

R
((
|a|2 + (1− η)∑n

i=1
|ci|2

)
P
σ2

o

)}
,

iii) the Amplify-and-forward scheme in [6], originally proposed for
the single relay channel and extended in our contribution to the mul-
tiple relay set up as follows:

ΣAF
X2

s
= 2αP

(
β

√
β (1− β)√

β (1− β) 1− β

)

DAF
i =

(
0 0
di 0

)

with di = ε · h∗
i

|h|

√
2(1−α)P

2αβP|bi|2+σ2
o

(See [6] for details). Plugging

DAF
i in (8), the achievable rate for the amplify-and-forward scheme

is obtained:

CAF = max
α,β

1

2
· log2

(
det
(
I + HAF

e ΣAF
X2

s

(
HAF

e

)H))
.

Fig. 2 depicts the achievable rates for all relaying techniques
versus the number of total relay nodes, for a transmit SNR of 5 dB
(i.e., P/σ2

o = 5 dB). We first notice that the proposed linear relay-
ing technique clearly outperforms amplify-and-forward and decode-
and-forward schemes, with higher capacity of up to 1 bps/Hz. More-
over, although suboptimum, the functions proposed in (21) represent
the tightest known bound on the capacity of the GMRC for high
enough number of relays (i.e., N ≥ 10). Nevertheless, partial de-
coding still outperforms linear relaying when the number of relays
is low. Furthermore, both the max-flow-min-cut bound and linear re-
laying grow logarithmically (and in the same slope) with the number
of relays. Fig. 3 shows the capacity of linear relaying versus the total
transmit SNR. N = 16 relays are considered in simulation. First, it is
shown that linear relaying generate the tightest known bound on the
capacity of the GMRC. Moreover, the distance between linear relay-
ing and the previously known techniques increases in the high SNR
regime, with a 50% more rate than the amplify-and-forward scheme
proposed in [6].
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Fig. 3. Expected achievable rate with linear relaying functions.
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6. CONCLUSIONS

This paper derives, for the Gaussian multiple relay channel with Lin-
ear relaying, the optimum temporal covariance matrix at the source
node and proposes new linear relaying functions that obtain the great-
est known achievable rates. Indeed, it shows that linear relaying
with optimum covariance matrix (following Thereom 1) clearly out-
performs well-known amplify-and-forward and decode-and-forward
schemes, and that, for high enough number of relays, it presents
gains up to 1 bps/Hz with respect to partial decoding techniques.
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