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ABSTRACT

This paper investigates the sensitivity of the achievables rates for
the full-duplex relay channel to small additive disturbances on chan-
nel links. The focus is on two relaying strategies—-the decode-and-
forward (DF) mode and the compress-and-forward (CF) mode. We
use Fisher Information and De-Bruijn’s identity to assess the de-
crease in the corresponding rates due to small additive contaminat-
ing noise. Analysis sheds light on the respective sensitivity levels
of these schemes and hence, provides insights onto the choice of
appropriate relaying strategies in the situations where some trade-
off between transmission rate and sensitivity is needed. Next, we
show that these results can be used to emphasize the effect of chan-
nel estimation error on relaying transmissions. An important (some-
how intuitive) observation at this stage is that transmission through
the direct link (i.e., relay is off) may improve upon both decode-
and-forward and compress-and-forward schemes, when the channel
is ”bad enough”. Finally, a lower bound on the capacity of a re-
lay channel under channel estimation error is obtained by combin-
ing well known relaying strategies, each over the appropriate SNR
range. Analysis is supported by some examples.

Index Terms— Relay channel, cooperative systems, channel
sensitivity, capacity bounds.

1. INTRODUCTION

Relaying transmissions model problems where one or more relays
help one or more pair of terminals communicate. The simplest form
of such transmissions is the one with one transmitter-receiver pair,
commonly known as the relay channel (RC) [1]. Though introduced
since relatively long, the capacity region of the general RC is still
unknown and, in fact, the most thorough analysis to date was pro-
vided in 1979 by Cover and El Gamal [2]. In [2], the authors derived
the capacity region under certain restrictive conditions for the relay
channel (being physically degraded). They also developed two cod-
ing strategies for general RC. The rst strategy achieves the rate in
[2, Theorem 4] and is now commonly known as decode-and-forward
(DF) [3]. The second strategy achieves the rate in [2, Theorem
6] and is now often called compress-and-forward (CF) (or, equiv-
alently, estimate-and-forward or quantize-and-forward [4]). There
have been then the now popular amplify-and-forward (AF) [5, 6]
and its variation scale-and-forward (SF) [4]. These coding strate-
gies gained considerable interest in the last few years, due to the
potential use of cooperative coding in a variety of applications such
as as a multihop wireless network and a sensor network.

Much of the earlier research on relaying strategies concentrated
on the comparison of these schemes in terms of achievable rates
(e.g., see [4]). They all came with the conclusion that none of these
schemes truly extract the potential bene ts of cooperating nodes and

that, in many cases, ef cient coding should rely on mixed strate-
gies. This paper focuses on relaying strategies from another stand-
point: sensitivity to small additive disturbances (or perturbations).
The aim is to determine which of these schemes is less/more sensi-
tive and whether the most ef cient scheme (in terms of achievable
rate) has the smallest/biggest sensitivity. The question of sensitiv-
ity to small additive disturbance (or, roughly speaking, to noise) has
at least two motivations. First, from a practical point-of-view, it is
clear that as transmission over wireless channels often suffers from
random uctuations in signal level known as fading and from co-
channel interference, one should consider not only the potentially
achievable transmission rate but also robustness to noise and inter-
ference in the design of relay communication systems. Second, from
an information-theoretical point-of-view, the study of sensitivity to
noise is important since it permits to predict how transmission rate
decreases in presence of small perturbations. In addition, this frame-
work readily applies to relaying with channel estimation error.

The remaining of this paper is organized as follows. In section
2, we use Fisher Information and De-Bruijn’s identity to assess the
decrease of the rates achievable by both DF and CF, for the general
relay channel (not necessarily Gaussian). We model the noise on
each link as the sum of a dominant (possibly non Gaussian) noise
and a relatively-weak Gaussian contaminating noise. Section 3 spe-
cializes the results of Section 2 to the Gaussian case. In section 4, we
emphasize the impact of channel estimation error on the achievable
rates for the full-duplex Gaussian RC, in the case where the channel
coef cients are known only partially. An achievable rate region is
derived based on a combination of DF, CF and transmission through
the direct link (DL). Section 5 concludes the paper.

2. SENSITIVITY OF ACHIEVABLE RATES

Consider the general relay channel (RC) depicted in Fig. 1, where
the source terminal sends message W (from set W , i.e., W ∈ W )
to the destination through a relay terminal. So, the relay receives
no speci c information and only assists the destination decode mes-
sage W . Throughout this paper, we use S, R and D to refer to
the source, relay and destination terminals, respectively. We as-
sume that time is discrete and at time t, S and R send X1(t) and
X2(t), respectively and R and D receive Y2(t) and Y = Y3(t),
respectively. The source signal X1(t) is function of the message
W ∈ W and the relay signal X2(t) is function of past relay’s inputs
Y t−1

2 � Y2(1), Y2(2), · · · , Y2(t − 1). We also suppose that the
three links S→ R, S→ D and R→ D are characterized by channel
coef cients h12, h13 and h23, respectively. Channel coef cients are
assumed to be nonrandom at this level.

Next, we assume that channel noise on each link is the sum of
a dominant, possibly non-Gaussian, noise (denoted by Z2 for R and
by Z3 for D) and a relatively weak Gaussian contaminating noise
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Fig. 1. The general Relay Channel (RC)

(denoted by θ2V2 for R and by θ3V3 for D). The two noise compo-
nents may model ambient noise and small channel variations or any
additive weak interference, respectively. With these notations, the
received signals are given by

eY2(t) = h12X1(t) + Z2(t) + θ2V2(t) = Y2(t) + θ2V2(t),

eY (t) = h13X1(t) + h23X2(t) + Z3(t) + θ3V3(t) = Y (t) + θ3V3(t),

where Z2 and Z3 are assumed to be independent of each other and
also independent of V2 and V3. We suppose without loss of gener-
ality that E[V2] = E[V3] = 0 and E[V 2

2 ] = E[V 2
3 ] = 1. Also, let

θ = (θ2, θ3)
T . The relay is allowed to operate in either DF or CF

modes. The aim is to emphasize the sensitivity of (the rate achiev-
able by) these schemes to the weak perturbations θ2V2 and θ3V3.

2.1. Decode-and-Forward (DF)

Assume the relay operates in DF. In the classical case where the is
no perturbation (i.e., θ = 0), DF achieves any rate up to [2, Theorem
4]

RDF(0) = max
p(x1,x2)

min
n

I(X1X2; Y ), I(X1; Y2|X2)
o

, (2)

where maximization is over all joint distributions p(x1, x2). Now,
when θ �= 0, the perturbations result in rate loss with respect to
the nominal rate RDF(0). This loss can be measured by the rate
difference RDF(0) − RDF(θ), i.e., by the tow mutual information
differences

I(1)
DF (θ) = I(X1; Y2|X2)− I(X1; eY2|X2), (3a)

I(2)
DF (θ) = I(X1X2; Y )− I(X1X2; eY ). (3b)

An interpretation of (3) in the light of the superposition blockMarko-
vian encoding in [2] where the source terminal sends fresh informa-
tion on top of re nement information, is that, here, I(1)

DF character-
izes the rate loss in transmitting the fresh information (from S to R)
and I(2)

DF characterizes the rate loss in transmitting the re nement in-
formation (from S and R to D), due to the perturbation. So, I(1)

DF

basically depends on the quality of the S → R channel, and I(2)
DF

basically depends on those of the R→ D and S→ D channels.
Using the ”Information Chain Rule” and the ”Entropy Chain

Rule” [7], this ”information loss” can be related to entropy, as

I(1)
DF (θ) = (H(X1X2

eY2)−H(X1X2Y2))− (H(X2
eY2)−H(X2Y2)),

(4a)

I(2)
DF (θ) = (H(X1X2

eY )−H(X1X2Y ))− (H(eY )−H(Y ))
(4b)

Now, recall De-Bruijn’s identity which relates entropyH(·) to Fisher
information J(·).
Lemma 1 (De Bruijn’s Identity [7, Theorem 16.6.2])
LetX be any random variable with nite variance and density f(x).
Let Z be an independent normally distributed random variable with
zero mean and unit variance. Then

∂

∂t
H(X +

√
tZ) =

1

2
J(X +

√
tZ). (5)

Using the multivariate version of (5) and some algebra to evaluate
the entropy of random vectors (X1, X2, eY2) = (X1, X2, Y2) +

(0, 0, θ2)V2, (X2, eY2) = (X2, Y2) + (0, θ2)V2, (X1, X2, eY ) =

(X1, X2, Y ) + (0, 0, θ3)V3 and eY = Y + θ3V3 in (4), we end up
with the following expressions (kind of Taylor expansion in θ) for
the DF rate loss:

I(1)
DF (θ) =

|θ2|2
2
{Tr(J(X1X2Y2))− Tr(J(X2Y2))}+ o(|θ2|2),

(6a)

I(2)
DF (θ) =

|θ3|2
2
{Tr(J(X1X2Y ))− Tr(J(Y ))}+ o(|θ3|2), (6b)

where Tr(·) and Var(·) denote the trace operator and the variance,
respectively.
From (6) we see that DF can be characterized by a pair γDF =

(γ
(1)
DF , γ

(2)
DF ) of sensitivity coef cients where we de ne

γ
(1)
DF � lim

‖θ‖→0

I(1)
DF (θ)

|θ2|2 and γ
(2)
DF � lim

‖θ‖→0

I(2)
DF (θ)

|θ3|2 . (7)

These two coef cients measure system sensitivity in the transmis-
sion of fresh information (to R, by S) and re nement information (to
D, by both S and R), respectively. In particular, comparison of γ(1)

DF

and γ
(2)
DF allows to determine to the quality of which link DF is most

sensitive. This is clearly useful in resource management (think of
rate/power allocation) and also in system design.

Remark 1: Eq. (7) means that for small values of θ, we have

RDF(θ) = max
p(x1,x2)

min {I(X1; Y2|X2)− γ
(1)
DF |θ2|2 + o(|θ2|2),

I(X1X2; Y )− γ
(2)
DF |θ3|2 + o(|θ3|2)}, (8)

where γ
(1)
DF and γ

(2)
DF , as de ned by (7), are given by

γ
(1)
DF =

1

2
Tr(J(X1X2Y2))− 1

2
Tr(J(X2Y2)), (9a)

γ
(2)
DF =

1

2
Tr(J(X1X2Y ))− 1

2
Tr(J(Y )). (9b)

Hence, the sensitivity coef cient γDF does not depend on the strength
of the perturbation (since de ned as a derivative of IDF w.r.t. this per-
turbation). Rather, it can be interpreted as a measure of the intrinsic
”robustness” of DF to small additive channel perturbations.

2.2. Compress-and-Forward (CF)

Assume now the relay operates in CF. If θ = 0, the CF strategy has
R forwarding a quantized and compressed version bY2 of its channel
output to D. The compression uses Wyner-Ziv coding [8], i.e., it
exploits the destination’s side information Y . This approach lets one
achieve any rate up to [2, Theorem 6]

RCF(0) = max I(X1; Y bY2|X2) (10)

subject to the constraint I(X2; Y ) ≥ I(Y2; bY2|X2Y ) where maxi-
mization is over all joint distributions of the form p(x1, x2, y, y2, ŷ2) =
p(x1)p(x2)p(y, y2|x1, x2)p(ŷ2|y2, x2). Now, if the perturbation is
non zero (i.e., θ �= 0), Wyner-Ziv coding sees a noisy side infor-
mation (since signal Y at D is corrupted by perturbation θ3V3) and
also a noisy signal to be compressed (since signal Y2 at R is cor-
rupted by perturbation θ2V2). Let the quantized version of signal eY2

be ebY 2 = bY2 + e, where e is a small error (with variance σ2
e ) due to

noisy quantization. We proceed as above and measure the rate loss
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due to the perturbation by the difference ICF(θ) = RCF(0)−RCF(θ).
We obtain

RCF(θ) = RCF(0)− γCF(|θ3|2 + σ2
e) + o(|θ3|2 + σ2

e), (11a)

γCF =
1

2
Tr(J(X1X2

bY2Y ))− 1

2
Tr(J(X2

bY2Y )). (11b)

Remark 2: At this stage, it is interesting to compare CF and DF
sensitivity coef cients γDF and γCF, for the same small additive dis-
turbance (i.e., given θ). For that, one has to compute Fisher infor-
mation in (9) and (11). This is not obvious in general (see Section
3 for comparison in the Gaussian case). However, viewing Fisher
Information as a measure of the accuracy in estimating the involved
signals, we can see that CF is less sensitive than DF at high trans-
mission rate. The reason is that γCF in (11b) can be viewed as the
error in estimating the input X1 if one observes (X2, bY2, Y ), which
is of course smaller than the error obtained by estimating both X1

and X2 from Y only, as in (9b). A similar argument shows that CF
is more sensitive than DF at low rate.

3. SENSITIVITY OF ACHIEVABLE RATES FOR THE
GAUSSIAN RC

Consider again the channel shown in Fig. 1. Let the noises Z2 and
Z3 be Gaussian with unit variance and E[X2

i ] = Pi, i = 1, 2. We
concentrate on the evaluation of DF and CF sensitivities to (the qual-
ity of) the S → R channel (R → D and S → D are assumed to be
perturbation-free) and denote by SNR the corresponding signal-to-
noise ratio at the relay. We now assume that the channel is known at
R within some mean-square error. More speci cally, we break h12

into ĥ12 and h̃12, where E[h12] = ĥ12 and E[h̃12] = 0. Intuitively,
we view ĥ12 as the measurement (or estimation) of the channel at
R and h̃12 as the zero-mean measurement (or estimation) error, as-
sumed to be normally distributed, i.e., h̃12 ∼ N(0, δ2

12).
The framework of Section 2 may apply here, as perturbation

θ2V2 may model the error in measuring channel coef cient h12 (dis-
regarding for the moment the fact that this error noise is potentially
non Gaussian; this problem is handled in Section 4).

Fig. 2 depicts the evolution of the coef cients γDF and γCF, cal-
culated assuming joint Gaussian distributions in (9) and (11b). Note
that, in order to model the fact that R can accurately estimate the
channel at high SNR, we let the error δ2

12 vary inversely proportion-
ally to SNR. More speci cally, both |h12|2 and δ2

12 vary in Fig. 2: As
|h12|2 increases from−10 dB to 10 dB, δ2

12 varies from 10−3|h12|2
at large SNR to 10−1|h12|2 at small SNR. We observe that: 1) DF
sensitivity rmly increases with the transmission rate (even though
the estimation error then becomes smaller). However, CF sensitivity
increases only slightly. This is due to the fact that, when it operates
in CF, the relay needs only quantize signal eY2. Thus, small estima-
tion error has only limited impact on CF, as small signal variations
do not cause eY2 to fall outside the quantization cell (however, er-
ror noise may have a larger impact if channels R→ D and S→ D
are known only partially, since this may cause a mismatch between
Wyner-Ziv encoder (at R) and decoder (at D)). We also observe that
2) DF is more (resp. less) sensitive than CF at high (resp. low)
transmission rate, which conforms remark 2 in Section 2.

4. FULL-DUPLEX GAUSSIAN RC UNDER CHANNEL
ESTIMATION ERROR

In this section, we investigate the effect of channel estimation error
on the achievable rates for a Full-Duplex Gaussian RC.We show that
the superiority of both DF and CF over simple transmission over the
direct link (DL) (i.e., relay off) may be questioned if the channel is
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Fig. 2. Sensitivity of DF and CF to small perturbations on the S→
R channel, due to channel estimation error. P1 = P2 = 5 dB.

severe. Then, we build upon this observation to derive bounds on the
capacity region of the GRC under channel estimation error.
4.1. Effect of estimation error on the Full-Duplex GRC

Consider the GRC considered in Section 3,

ỹ2 = ĥ12x1 + h̃12x1 + z2 (12a)

ỹ = ĥ13x1 + ĥ23x2 + h̃13x1 + h̃23x2 + z3, (12b)

where h̃12, h̃23 and h̃13 stand for estimation errors and have vari-
ances δ2

12, δ
2
23 and δ2

13, respectively. From an information theoretical
standpoint, the estimation error causes the GRC to deviate from the
classical description for at least three reasons. First, treating the er-
ror terms h̃12x1, h̃23x2 and h̃13x1 as noise is clearly suboptimal, as
these terms may potentially convey ”information” about channel in-
put, since they are statistically dependent on both X1 and X2. Sec-
ond, it is not clear whether one could nd a combination (R,S,D)
that can exploits this dependence and hence, the capacity of the re-
sulting channel (even when the original channel is degraded) is un-
known. Third, even if the estimation error is sub-optimally relegated
to noise, this noise remains non-conventional, in that it is possibly
non-Gaussian (for the rate-maximizing input distribution) and above
all dependent on both X1 andX2.
4.2. Bounds on capacity

We obtain an upper bound by simply using the ”max- ow-min-cut”
Theorem [7, Theorem 14.10.1] or [2, Theorem 4] and conditioning
on vector h = (h12, h23, h13)

T . Let C(x) � 0.5 log2(1 + x).

Proposition 4.1 (Upper bound) The capacity of the Full-Duplex Gaus-
sian RC with estimation error (12) is upper bounded by

Cout = max
p(x1,x2)

min {I(X1X2; eY |h), I(X1; eY eY2|X2h)}

= max
β

min
n

C(|ĥ13|2P1 + |ĥ23|2P2 + 2

q
β|ĥ13|2|ĥ23|2P1P2

+ δ2
13P1 + δ2

23P2), C((1− β)(|ĥ12|2 + |ĥ13|2 + δ2
12 + δ2

13)P1)
o

.

Next, we obtain a lower bound by replacing the error noise in (12)
by Gaussian noise with the same variance and combining the rate
regions achievable by DF, CF and DL (this will be justi ed below).

Proposition 4.2 (Achievable rate region) The capacity of the Full-
Duplex GRC with estimation error (12) is lower bounded by

C in = max
0≤β≤1

{C in
1 (β), C in

2 , C in
3 }, (13)

III  499



where

C in
1 (β) = min

n
C(
|ĥ13|2P1 + |ĥ23|2P2 + 2

q
β|ĥ13|2|ĥ23|2P1P2

1 + δ2
13P1 + δ2

23P2
),

C(
(1− β)|ĥ12|2P1

1 + δ2
12P1

)
o

, (14a)

C in
2 = C(

|ĥ13|2P1

1 + δ2
13P1 + δ2

23P2
+

|ĥ12|2P1

1 + σ2
w + δ2

12P1
), (14b)

C in
3 = C(

|ĥ13|2P1

1 + δ2
13P1

). (14c)

The rate C in
1 (β) is obtained by lower-bounding I(X1; eY2|X2) and

I(X1X2; eY ) using techniques which are similar in nature to those
used in [9] to bound the capacity region of a multiple access channel
(MAC) (However, caution should be exercised here since, by oppo-
sition to MAC inputs in [9],X1 andX2 are correlated). The rateC in

2

is obtained by evaluating the achievable ratemaxρ I(X1; eY ebY 2|X2)
with the choice of input distribution s.t. E[X1X2] = ρ

√
P1P2 andebY 2 = Y2 +Zw, where Zw ∼ N (0, σ2

w) and σ2
w is the ”compression

noise” satisfying I(X2; eY ) = I(eY2;
ebY 2|X2

eY ). The rate C in
3 corre-

sponds to DL. Note that the additional compression noise due to the
estimation error is σ2

e = σ2
w− (1+ (|ĥ12|2 + |ĥ13|2)P1)/|ĥ23|2P2.

4.3. Discussion

Fig. 3 plots the bounds C in and Cout and the rates achievable by DF
(C in

1 ), CF (C in
2 ) and DL (C in

3 ), versus the SNR in the link S→ R.
We observe that:
1. when the channel is perfectly known (curves in solid line), CF
always gives a rate gain over DL. So, in this case turning the
relay off (i.e., operating in DL) inevitably results in rate loss.
However, in presence of estimation error (curves in dashed
line), this no longer holds since DL may improve upon CF
when the channel is ”bad enough” (i.e., small values of |h12|).

2. the best rate achievable with a mixed strategy that uses DF,
CF and DL (i.e., the one that achieves the lower bound C in)
consists in keeping the relay off at very small SNR, then have
the relay operate in CF for small-to-medium SNR and nally,
when the channel becomes ”suf ciently good”, use DF.

3. DF is more ef cient (in terms of transmission rate) than CF
at high rate and (unfortunately) it is also more sensitive. The
same remark is valid for CF at low rate. This is because, the
more one scheme bene ts from channel knowledge (e.g., DF
when R is close to S) the more it is vulnerable to small varia-
tions in this channel. A trade-off rate/sensitivity is needed for
non-demanding rate applications.

Remark 3: Note that the fact that, by opposition to the case
when the channel is known, DL may potentially improve upon both
DF and CF in presence of channel estimation error reveals one of
main limitations of cooperative communication in real situations: er-
ror propagation from one node to another.

5. CONCLUSION

In this paper, we investigated the sensitivity of two relaying strategies—
the decode-and-forward (DF) scheme and the compress-and-forward
(CF) scheme, to small additive disturbances. We used Fisher Infor-
mation and De-Bruijn’s Identity to assess the decrease in the corre-
sponding rates. Analysis sheds light on the ”robustness” of these two
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Fig. 3. Lower bound C in, upper bound Cout, and rates achievable
by DF, CF and DL for Full-Duplex GRC with (dashed) and without
(solid) channel estimation error, versus the SNR in the link S→ R.
The variance δ2

12 of the estimation error varies inversely proportion-
ally to SNR as in Section 3. P1 = P2 = 5 dB.

schemes to small channel variations and provides insights onto the
choice of appropriate relaying strategies that meet a certain trade-off
between transmission rate and sensitivity, in real situations. Next,
we used these result to emphasize the impact of channel estimation
error on a Full-Duplex Gaussian relay channel and derive lower and
upper bounds on its capacity.
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