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ABSTRACT

In this paper, we derive an optimal spatial power allocation strat-
egy that maximizes the achievable rate of the decode-and-forward
(DF) relay channels in a Rayleigh fading environment. Different
from prior work, the derived strategy only requires the knowledge
of the variances of the channels at the transmitters, which does not
require frequent updates. Furthermore, we demonstrate that the opti-
mal spatial power allocation strategy leads considerable performance
improvements over the equal power allocation one.

Index Terms— Achievable rate, cooperative communications,
Rayleigh fading, relay channel.

1. INTRODUCTION

Recently, considerable research efforts have been made to design
cooperative relaying techniques to improve spectral efficiency and
reliability of wireless networks. So far, the fundamental perfor-
mance limit, capacity, of general relay channel remains unknown
except for some special cases [1]. As an alternative, the information
rates achieved by various relaying protocols such as decode-and-
forward (DF), amplify-and-forward (AF) and compress-and-forward
(CF) ha-ve been extensively investigated [1, 2, 3]. Among these in-
formation rates, till now, the highest information rate proved for the
relay channels was obtained in [1] and achieved by DF relaying pro-
tocol. When the fading processes of the channels are ergodic, we can
signal at the rate termed as the achievable rate with vanishing error
if asymptotic optimal codebooks are used. The achievable rate is
commonly served as an information-theoretic performance measure,
and it depends on the statistical correlation of the signals transmit-
ted from source and relay, and the spatial power allocation between
these two nodes. It has been pointed out in [3, 4] that the transmit
signals from source and relay, that maximize the achievable rate, are
statistically independent for Rayleigh fading DF relay channels. A
spatial power allocation strategy that maximizes the upper bound of
the ergodic capacity was derived in [4] for low signal-to-noise ratio
(SNR) regime. In [5], several power allocation strategies that maxi-
mize the lower or upper bounds of ergodic capacity were developed
for various settings, but require the acquisition of the instantaneous
channel state information (CSI) at the source and relay.

In this paper, we focus on deriving the optimal spatial power
allocation strategy that maximizes the achievable rate of Rayleigh
fading DF relay channels. One appealing feature of this strategy is
that it only relies on the knowledge of the variances of the channels
(statistical CSI) at the transmitters of the source and relay, which
can be readily obtained and does not require frequent update. We
first derive an analytical expression of the achievable rate, which de-
pends on the correlation coefficient of the transmit signals from the
source and relay, as well as the spatial power allocation. We show in
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Fig. 1. The three-node (single-relay) channel.

mathematically rigorous manner that for any fixed power allocation,
the achievable rate is a monotonically decreasing function of the cor-
relation coefficient of the transmit signals from the source and relay,
and thus the optimal transmit signals that maximize the achievable
rate are always independent. Therefore, we solely concentrate on
spatial power allocation strategy with independent transmit signal-
ing and derive the optimal power allocation strategy through solving
certain transcendental equations numerically. Our findings suggest
that it is not always beneficial to use the relay, and the optimal power
allocation generally depends on the variances of the channels and the
total transmit power. Several examples demonstrate that the optimal
spatial power allocation strategy considerably outperforms the equal
power allocation one.

2. SYSTEM MODEL

Fig. 1 depicts a DF relay system that consists of a source (Node 1),
a relay (Node 2), and a destination (Node 3). The transmit power at
the source and relay are P1 and P2, respectively.

The source transmits
√

P1x1, while the relay transmits
√

P2x2

based on the prior received signals from the source. Both x1 and x2

are subject to power constraints E(|x1|2) = 1 and E(|x2|2) = 1.
Mathematically, the received signals at the relay and destination can
be expressed as

y2 =
√

P1 h12x1 + z2,

y3 =
√

P1 h13x1 +
√

P2 h23x2 + z3,

where z2 and z3 are additive white Gaussian noise (AWGN) at the
relay and destination, respectively, each with mean zero and vari-
ance normalized to one. Each hij denotes the channel gain between
nodes i and j, which takes account of the effects of path loss, shad-
owing and frequency nonselective fading. The hij’s are independent
zero mean complex Gaussian random variables with variance σ2

ij ,

i.e., hij ∼ CN (0, σ2
ij). Furthermore, we assume that the relay node

works in full-duplex mode which usually offers higher spectrum ef-
ficiency than its half-duplex counterpart, perfect CSI is available at
the corresponding receivers, P1 and P2 satisfy a total power con-
straint given as P1 + P2 ≤ P , and perfect timing synchronization is
available at all nodes.
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3. ACHIEVABLE RATE

In this section, we introduce the definitions of the achievable rate
when the fading process is ergodic, then obtain an analytical ex-
pression of the achievable rate of the DF relay system in an ergodic
Rayleigh fading environment.

In the single-relay system described above, the highest achiev-
able rate proved till now is [1, Theorem 1], [6]

Rdf = max
f(x1,x2)

min
˘
E[I(X1; Y2 | X2)], E[I(X1, X2; Y3)]

¯
, (1)

where f(x1, x2) denotes the joint density function of X1 and X2,
and the expectations E[·] are with respect to the channels. Define
ρ as the correlation coefficient of X1 and X2, i.e., ρ = E[X1X

∗
2 ],

and ν as the power allocation ratio, i.e., ν = P1/P , which quanti-
fies the spatial power allocation between the source and relay. For
any realization of hij , f(x1, x2) that maximizes the achievable rate
is zero-mean jointly Gaussian [3, Proposition 2]. Thus, the maxi-
mization over all input distribution f(x1, x2) in (1) reduces to the
maximization only over the correlation coefficient ρ and the power
allocation ratio ν. Accordingly, the highest achievable rate in (1) can
be rewritten as [3, Eq. (106)], [5, Eq. (7)]

Rdf = max
ρ,ν

min {E[Isr], E[Imac]} , (2)

where Isr and Imac are

Isr = log2

`
1 + (1 − |ρ|2)P1|h12|2

´
, (3)

Imac = log2

`
1 + P1|h13|2 + P2|h23|2 + 2

√
P1P2�(ρh13h

∗
23)

´
.

Note that to make (2) non-trivial and meaningful, ν should be in
the interval (0, 1) . In the extreme case of ν = 1, i.e., only the
direct transmission takes place, the mutual information between the
transmitted signals at source and the received signals at destination
is Isd = I(X1, Y3) = log2(1 + P |h13|2), and the achievable rate is
Rsd = E[Isd] instead of Rdf given in (2).

The quantity min {E[Isr], E[Imac]} is the achievable rate [6],
which depends on the correlation coefficient ρ and the spatial power
allocation ν. In order to determine the optimal ρ and ν, we need to
express the achievable rate in terms of the parameters ρ and ν. To do
so, we first express Isr and Imac in new forms, which facilitates us
to obtain E[Isr] and E[Imac] for arbitrary ρ and ν.

Define μ = 1 − |ρ|2 and ηij(ij = 12, 13, 23) as follows

η12 = P1σ
2
12 = νPσ2

12, η13 = P1σ
2
13 = νPσ2

13,

η23 = P2σ
2
23 = (1 − ν)Pσ2

23. (4)

With the noise whitening and eigen-decomposition techniques [7],
we can re-express Isr and Imac in (3) as

Isr = log2(1 + μη12|h̃12|2),
Imac = log2(1 + α|h̃13|2 + β|h̃23|2), (5)

where h̃12, h̃13 and h̃23 are independent and identically distributed
(i.i.d.) complex Gaussian random variables with zero mean and unit
variance, α and β are given as

α =
η13 + η23

2
+

r“η13 + η23

2

”2

− η13η23μ,

β =
η13 + η23

2
−

r“η13 + η23

2

”2

− η13η23μ. (6)

With the expressions (5) of Isr and Imac, we can easily obtain
their mean values and the achievable rate, which are presented in the
following theorem.

Theorem 1 The achievable rate is a function of μ and ν, and it is
given by

R(μ, ν) = min{Rsr(μ, ν), Rmac(μ, ν)}, (7)

where Rsr(μ, ν) and Rmac(μ, ν) denote E[Isr] and E[Imac], respec-
tively, and are given as

Rsr(μ, ν) = E[Isr] = exp(μ−1η−1
12 )E1(μ

−1η−1
12 ) log2 e, (8)

Rmac(μ, ν) = E[Imac] =
α exp( 1

α
)E1(

1
α
) − β exp( 1

β
)E1(

1
β
)

(α − β) ln 2
,

with E1(x) denoting the exponential integral function, i.e., E1(x) =R∞
x

e−t/t dt (x > 0).

Remark: The achievable rate R(μ, ν) does not depend the phase of
ρ. This is due to the fact that in the Rayleigh fading case, the phase
of ρ does not alter the distribution of the phase of ρh13h

∗
23, since the

phase of h13h
∗
23 is uniformly distributed.

Remark: For ρ = 0, E[Imac] was given in [6]; however, for ρ other
than zero, E[Imac] does not seem available in the literature.

4. OPTIMAL POWER ALLOCATION

In this section, we will present our optimal spatial power allocation
strategy that maximizes the achievable rate for the Rayleigh fading
DF relay channel. As can been from (7), the achievable rate R de-
pends on μ and ν. We first show that for any fixed power allocation
ν, the optimal transmit signals are always independent, i.e., μ = 1
is optimal for any fixed ν ∈ (0, 1). This motivates us to solely focus
on deriving the optimal spatial power allocation strategy for inde-
pendent transmit signaling.

4.1. Optimal Transmit Signaling

For a fixed spatial power allocation ν ∈ (0, 1), designing an optimal
transmit signaling is equivalent to finding an optimal μ which max-
imizes the achievable rate. The optimal μ for a fixed ν ∈ (0, 1) is
denoted by μe(ν), i.e.,

μe(ν) = arg max
0≤μ≤1

R(μ, ν), ν ∈ (0, 1). (9)

It was concluded in [3, Theorem 8] that μe(ν) is one, i.e.,μe(ν) = 1,
for a more general case, which considers multiple relays and only as-
sumes that the phases of the channel gains are uniformly distributed.
However, the proof of the theorem involves using the Jensen’s in-
equality to approximate E[log(x)]. Rigorously speaking, maximiz-
ing log(E[x]) is not necessarily equivalent to maximizing E[log(x)].
By using the expressions (5) of Isr and Imac, the proof can be made
mathematically rigorous in the Rayleigh fading single-relay case.
Therefore, we introduce the following theorem that restates a part
of the result [3, Theorem 8], but complements it with our finding on
the monotonicity of R(μ, ν), and a mathematically rigorous proof
for the optimality of μe(ν) = 1 for any ν ∈ (0, 1).

Theorem 2 The achievable rate R(μ, ν) is an increasing function
of μ ∈ [0, 1] (or, equivalently, a decreasing function of |ρ| ∈ [0, 1])
for any fixed ν ∈ (0, 1). Thus, μe(ν) is one for any fixed ν ∈
(0, 1). It means that the optimal transmit signals from source and
relay that maximize the achievable rate R should be always inde-
pendent. Furthermore, the maximum achievable rate RI

df(ν) for a
fixed ν ∈ (0, 1) is given by

RI
df(ν)=max

μ
R(μ, ν)=R(1, ν)=min{RI

sr(ν), RI
mac(ν)}, (10)

III ­ 482



where RI
sr(ν) = Rsr(1, ν) and RI

mac(ν) = Rmac(1, ν), i.e.,

RI
sr(ν) = exp(η−1

12 )E1(η
−1
12 ) log2 e,

RI
mac(ν) =

η13 exp(η−1
13 )E1(η

−1
13 ) − η23 exp(η−1

23 )E1(η
−1
23 )

(η13 − η23) ln 2
.

Proof: Clearly, Rsr(μ, ν) is a monotonically increasing function
of μ for any fixed ν ∈ (0, 1), since Isr is an increasing function of
μ. However, the monotonicity of Rmac(μ, ν) is not obvious. To
demonstrate the monotonicity of Rmac(μ, ν), we calculate

∂Rmac(μ, ν)

∂μ
= −η13η23

α − β

»
∂Rmac(μ, ν)

∂α
− ∂Rmac(μ, ν)

∂β

–

= −η13η23

α − β
E

»
w1 − w2

1 + αw1 + βw2

–
, (11)

where w1 = |h̃13|2, w2 = |h̃23|2, and the second equality follows
from Rmac(μ, ν) = E[log2(1 + αw1 + βw2)]. It is shown in [8,
Theorem 3.1] that when w1 and w2 are i.i.d. and α ≥ β, we have

E

»
w1 − w2

1 + αw1 + βw2

–
≤ 0.

From (11), we can readily conclude that ∂Rmac(μ, ν)/∂μ ≥ 0. It
implies that Rmac(μ, ν) is increasing in μ for any fixed ν ∈ (0, 1).
Thus, R(μ, ν) is an increasing function of μ (or a decreasing func-
tion of |ρ|) for any fixed ν ∈ (0, 1), and it is maximized at μ =
1 (or ρ = 0). Lastly, we obtain RI

sr(ν) and RI
mac(ν) by evaluating

Rsr(1, ν) and Rmac(1, ν), respectively. �

4.2. Spatial Power Allocation

Since the optimal value of μ, μe(ν), is one for any fixed ν ∈ (0, 1)
(Theorem 2), we now consider an optimal spatial power allocation
for independent transmit signaling. In such a case, the optimal spa-
tial power allocation strategy for the DF relay channel is ν̂e such
that

ν̂e = arg max
0<ν<1

R(1, ν) = arg max
0<ν<1

RI
df(ν). (12)

Moreover, in the case of ν = 1, as mentioned in Section 3, the
mutual information is Isd, and the corresponding achievable rate is

Rsd = E[Isd] = exp(σ−2
13 P−1)E1(σ

−2
13 P−1) log2 e. (13)

To determine whether to use direct transmission or DF relay trans-
mission with optimal power allocation ν̂e, we need compare Rsd

with RI
df(ν̂e) = Rdf . Thus, the optimal spatial power allocation νe

is determined as

νe =

j
ν̂e, RI

df(ν̂e) > Rsd,
1, RI

df(ν̂e) ≤ Rsd.
(14)

We denote the corresponding maximum achievable DF rate as RJ
df =

max{RI
df(ν̂e), Rsd} = max{Rdf , Rsd}.

Theorem 3 If σ2
12 ≤ σ2

13, the optimal transmission strategy is to
use only direct transmission and allocate all the transmit power at
the source, i.e., νe = 1, with RJ

df = Rsd.

Proof: It follows from (10) that RI
df(ν) ≤ RI

sr(ν). Since RI
sr(ν)

is an increasing function and σ2
12 ≤ σ2

13, we have

RI
df(ν) ≤ RI

sr(ν) ≤ lim
ν→1

RI
sr(ν) ≤ Rsd

for any ν ∈ (0, 1). It implies that to achieve the highest rate, all the
power should be allocated to the source. �

However, in practice, the link from the source to relay is typi-
cally stronger than the direct link, i.e., σ2

12 > σ2
13. In such a case,

we have

RI
df(ν̂e) ≥ lim

ν→1
RI

df(ν) = Rsd,

and thus νe = ν̂e. To determine ν̂e, we need to know the mono-
tonicity of RI

sr(ν) and RI
mac(ν). Clearly RI

sr(ν) is an increasing
function, but the monotonicity of RI

mac(ν) is not obvious, which is
stated in the following lemma.

Lemma 1 The function RI
mac(ν) is increasing on the interval [0, ν̂),

and decreasing on (ν̂, 1), where ν̂ = arg max
0<ν<1

RI
mac(ν) and is

determined as follows:

a) If σ2
13 = σ2

23, then ν̂ equals 1/2;
b) If σ2

13 �= σ2
23, then ν̂ is the unique root of the equation»

σ2
13σ

2
23P

η13 − η23
+

σ2
13

η13

–
exp(η−1

13 )E1(η
−1
13 ) −»

σ2
13σ

2
23P

η13 − η23
− σ2

23

η23

–
exp(η−1

23 )E1(η
−1
23 ) = σ2

13 + σ2
23. (15)

Proof: The optimization problem maxν RI
mac(ν) is a convex

problem, because the second partial derivative of RI
mac(ν) is always

non-positive, i.e.,

∂2RI
mac(ν)

∂ν2
= − log2 e · E

»
(Pσ2

13w1 − Pσ2
23w2)

2

(1 + η13w1 + η23w2)2

–
≤ 0.

Clearly ν̂ is the unique solution of ∂RI
mac(ν)/∂ν = 0 as shown in

(15). Since ∂2RI
mac(ν)/∂ν2 is non-positive, ∂RI

mac(ν)/∂ν is posi-
tive and RI

mac(ν) is increasing on the interval [0, ν̂); ∂RI
mac(ν)/∂ν

is negative and RI
mac(ν) is decreasing on the interval (ν̂, 1]. In par-

ticular, when σ2
13 = σ2

23, we have ν̂ = 0.5. �
We next introduce the optimal spatial power allocation strategy

for the case of σ2
12 > σ2

13.

Theorem 4 If σ2
12 > σ2

13, the optimal spatial power allocation
νe = ν̂e is:

a) If RI
sr(ν̂) ≥ RI

mac(bν), then ν̂e = ν̂ and RJ
df = RI

mac(ν̂).

b) If RI
sr(ν̂) < RI

mac(ν̂), then ν̂e = ν∗ ∈ (ν̂, 1) and RJ
df =

RI
sr(ν

∗), where ν∗ denotes the unique root of RI
sr(ν) =

RI
mac(ν) in (ν̂, 1).

Proof: a) If RI
sr(ν̂) ≥ RI

mac(ν̂), the inequalities RI
df(ν) ≤

RI
mac(ν) ≤ RI

mac(ν̂) ≤ RI
sr(ν̂) hold for any ν ∈ (0, 1). This fact

indicates that ν̂e = ν̂ and RJ
df = RI

mac(ν̂).

b) Define ψ(ν) = RI
sr(ν)−RI

mac(ν). Since RI
sr(ν̂) < RI

mac(ν̂)
and σ2

12 > σ2
13, we have

ψ(ν̂) < 0 and lim
ν→1

ψ(ν) > 0,

which indicate that ψ(ν) has at least one root ν∗ ∈ (ν̂, 1). Moreover,
the facts that RI

mac(ν) is decreasing on the interval (ν̂, 1) (Lemma
1), and RI

sr(ν) is increasing, imply that ψ(ν) is an increasing func-
tion of ν ∈ (ν̂, 1). Therefore, ψ(ν) has one and only one root
ν∗ ∈ (ν̂, 1). With RI

df(ν) ≤ RI
sr(ν

∗) for ν ∈ (0, ν∗] and RI
df(ν) ≤

RI
mac(ν

∗) for ν ∈ (ν∗, 1), we can easily conclude that ν̂e = ν∗. �
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5. NUMERICAL RESULTS

In this section, we provide the following two examples to illustrate
our findings. Assume that σ2

13 is normalized to one. We adopt the
well known path-loss model with path-loss exponent being 3, i.e.,
σ2

ij ∝ d−3
ij , where dij denotes the distance between nodes i and j.

Example 1: In Fig. 2, we show the achievable rate (10) versus
the total transmit power P (or transmit SNR) for d12 = d23 = d13/2
and d12 = d23 = 2d13/3. We compare the achievable rates of the
DF relay transmission with equal power allocation (ν = 0.5), and
with optimal power allocation (νe). From Fig. 2, we can see that
the optimal power allocation strategy considerably outperforms the
equal power allocation one.

Example 2: In this example, we assume that the source, relay
and destination are collinear, i.e., d12 + d23 = d13. In Fig. 3, we
study the impacts of the location of the relay on the achievable rate,
for both equal power allocation (ν = 0.5) and optimal power allo-
cation (νe). We observe that, when the relay is far from the source
(d12/d13 > 0.5), the optimal power allocation strategy can greatly
improve the achievable rates. However, when the relay is close to
the source (d12/d13 < 0.5), the gain achieved by adopting optimal
power allocation is negligible. We plot the corresponding optimal
power allocation νe versus d12/d13 in Fig. 4. It can be seen that the
optimal power allocation νe becomes insensitive to the total transmit
power P when d12/d13 exceeds a certain value.

6. CONCLUSION

In this paper, we derived an analytical expression of the achievable
rate of the DF relay system in an ergodic Rayleigh fading envi-
ronment, proved in a mathematically rigorous manner that optimal
transmit signals from source and relay are independent irrespective
of the transmit power, and obtained the optimal spatial power al-
location strategy that maximizes the achievable rate. We further
disclosed that the optimal spatial power allocation depends on the
variances of the channels and the total transmit power, and it can be
obtained by solving certain transcendental equations numerically.
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