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ABSTRACT

We consider the communication system that transmits a se-

quence of binary vector symbols over a vector intersymbol

interference (ISI) channels subject to additive white Gaussian

noise . Conventionally, maximum likelihood (ML) sequence

is computed using the Viterbi Algorithm (VA), whose com-

plexity scales exponentially in both the symbol vector length

and the number of ISI channel taps. We show that, as the sig-

nal to noise ratio (SNR) goes to infinity, the ML sequence can

be obtained with an asymptotic complexity scaling linearly in

the number of channel taps and quadratically in the symbol

vector length.

Index Terms— Maximum likelihood, Sequence detec-

tion, Statistical information, Viterbi algorithm

1. INTRODUCTION

Consider the scenario where a sequence of vector symbols,

with each vector having K binary elements, are sent from a

transmitter to a receiver through a vector intersymbol interfer-

ence (ISI) channel, whose number of taps is L, subject to ad-
ditive Gaussian noise. Assume the source vector symbols are

independently generated with all possible values being equal

probable. If the receiver is willing to minimize the probability

of sequence detection error, the optimal decision is given by

the maximum likelihood (ML) sequence that maximizes the

log likelihood function. Finding such sequence is known as

the maximum likelihood sequence detection (MLSD) prob-

lem.

Conventionally, the ML sequence is computed using the

well known Viterbi algorithm (VA) [1], whose complexity

scales linearly in the sequence length, but exponentially in the

source symbol vector lengthK, and exponentially in the num-
ber of ISI channel taps L. Such complexity can be prohibitive
for systems with large KL values. Throughout the past three
decades, many attempts have been made to find sequence de-

tectors performing about the same as the VA, but less complex

in terms of the scaling law in the Markov states [3][4][5]. The

main idea considered in these algorithms is to update only a

selected number of routes upon the reception of each observa-

tion so that the worst case complexity of the algorithm is un-

der control. However, a consequence of such limited search is

that none of these complexity-reduction methods can guaran-

tee the ML sequence, which is the sequence that maximizes

the log likelihood function. On the other hand, if the length

of the input vector sequence, N , is small, one can regard the
MLSD problem as a maximum likelihood (ML) lattice decod-

ing problem with an input symbol vector of length NK [7].

Consequently, ML sequence can be obtained using various

versions of the sphere decoding algorithm with low average

complexity, under the assumption of high signal to noise ratio

(SNR) [6][7]. Unfortunately, due to the difficulty of handling

a lattice of infinite dimension, these algorithms cannot extend

directly to the situation of stream input where the length of

the source sequence is practically infinity. In summary, most

existing complexity reduction methods for MLSD either can-

not guarantee the ML sequence, or are not suitable for stream

input.

Although the VA is computation efficient in the sense of

exploiting the underlying Markov chain structure, it does not

fully exploit the statistical information of the system. Particu-

larly, the observations of the system are related to the Markov

states through a statistic model, which is usually known to

the receiver. If the observation perturbation is small, the ob-

servation sequence provides a strong inference about the un-

derlying Markov states. Such information can be used to sig-

nificantly reduce the number of routes one should visit in the

VA. For the communication system studied in this paper, we

develop an examination method which guarantees the trun-

cated sequence passing the examination is indeed the trun-

cated ML sequence. As SNR goes to infinity, the proposed

examination method becomes highly efficient in the sense of

passing the actual truncated source sequence with asymptotic

probability one. Together with the help of an asymptotically

efficient sequential detector whose probability of symbol de-

tection error is asymptotically zero, the proposed algorithm

obtains the ML sequence with an asymptotic complexity of

O(LK2) per symbol. This complexity is, in the scaling order
sense, no higher than any of the efficient sequence detectors,

including suboptimal ones, that can achieve diminishing sym-

bol detection error as SNR goes to infinity. In the situation of

finite-length input sequence, the worst case complexity of the

MLSD algorithm is in the same order of the VA.
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The proposed MLSD algorithm is presented in a simple

form in order to show clearly the insight of asymptotic com-

plexity reduction. We make no effort in reducing the com-

plexity further as long as the desired asymptotic scaling law

is achieved. The proofs of the theorems are presented in [8].

2. SYSTEMMODEL

Let x(0),x(1), . . . ,x(n), . . . ,x(N − 1) be a sequence of
source symbol vectors, each of length K, with binary-valued
elements. Let xi(n) be the ith element of x(n). xi(n) ∈
{−1,+1}, ∀i, n. Assume the source vectors are randomly

and independently generated, with all possible values being

equal probable. The sequence of vectors are then transmitted

to the receiver through a vector ISI channel. The nth received
symbol vector, also of lengthK, is given by,

y(n) =
L−1∑
l=0

F [l]x(n− l) + v(n) (1)

Here F [l], l = 0, . . . , L − 1 are the channel matrices, each
of size K × K with real-valued elements; v(n) is the K
length white Gaussian noise vector with zero mean and vari-

ance σ2I . We assume all the channel matrices are known

to the receiver and are time-invariant throughout the commu-

nication. We assume the input sequence length N is large

enough to be practically considered as infinity. We also as-

sume x(n) = 0 for n < 0 and n ≥ N .
The following is a key assumption required for the deriva-

tion of the results in Section 3. A discussion about this as-

sumption is given at the end of Section 3.

Assumption 1 We assume the channel matrix F [0] is lower
triangular with all its diagonal elements being strictly posi-
tive. DefineF (ω) as the vector Fourier transform of the chan-
nel matrices,

F (ω) =
L−1∑
l=0

F [l]e−jω (2)

Define λmin(A) as the minimum eigenvalue of a Hermitian
matrix A. Let F (ω)H be the conjugate transpose of F (ω).
Define

λ0 = min
ω∈[0,2π)

λmin(F (ω)HF (ω)) (3)

We assume λ0 > 0.

Define

Ψi({x(n)}) = −
i∑

n=0

∥∥∥∥∥y(n)−
L−1∑
l=0

F [l]x(n− l)
∥∥∥∥∥
2

(4)

We useΨ({x(n)}) to refer to the sum log likelihood function

ΨN+L−2({x(n)}) corresponding to the sequence {x(n)}.

Upon the reception of the observation sequence {y(n)},
the optimal detection that minimized the probability of se-

quence detection error is given by the ML sequence.

{xML(n)} = arg max
{x(n)},x(n)∈{−1,+1}K

ΨN+L−2({x(n)})
(5)

We are interested in the complexity of theMLSD per sym-

bol, as σ goes to zero.

3. SEQUENCE DETECTION

We first present in the following theorem the optimality ex-

amination method that can verify whether a particular vector

in a finite-length truncated decision sequence is identical to

the corresponding vector in the ML sequence.

Theorem 1 Given the observation sequence {y(n)}, let {x̂(n)}
be a decision sequences. Define

U0 = max
x(i)∈{−2,0,+2}K ,∀i

L−2∑
i=0

∥∥∥∥∥
i∑

l=0

F [l]x(i− l)
∥∥∥∥∥
2

(6)

Let 0 < δ < λ0
L . Let D be a positive integer satisfying

D >
2U0 + L−1

L λ0

δ
− 3

2
L+ 2 (7)

For anyM ≥ L+D−1, if the following inequality is satisfied
for allM −D < n < M +D + L− 1,

∥∥∥∥∥y(n)−
L−1∑
l=0

F [l]x̂(n− l)
∥∥∥∥∥
2

<
λ0
L
− δ (8)

then x̂(M) = xML(M) must be true.

The optimality examination method presented in Theorem

1 is asymptotically efficient in the following sense. If {x̂(n)}
is indeed the actual source sequence, for anyM ≥ L+D−1,
the probability of (8) being true for allM −D < n < M +
D + L− 1 goes to one as σ goes to zero.

Let xL(n) = [x(n − L + 1)T , . . . ,x(n)T ]T be the nth

state vector for the underlying Markov chain. Ψ({x(n)}) can
be computed via the following recursive algorithm.

ΨM ({x(n)}) = ΨM (xL(n ≤M))

= ΨM−1({x(n)})−
∥∥∥∥∥y(M)−

L−1∑
l=0

F [l]x(M − l)
∥∥∥∥∥
2

= ΨM−1(xL(n ≤M − 1)) + γM (xL(M − 1),xL(M))
(9)

Here γM (xL(M − 1),xL(M)) is the value of the path con-
necting Markov states xL(M − 1) and xL(M).

γM (xL(M−1),xL(M)) = −
∥∥∥∥∥y(M)−

L−1∑
l=0

F [l]x(M − l)
∥∥∥∥∥
2

(10)
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We also define

ΓM (xL(M)) = max
x(n≤M−L)∈{−1,+1}K

ΨM ({x(n)}) (11)

as the value of the Markov state xL(M). Note that when a
state value is obtained, we also obtain the corresponding route

in the Markov graph that achieves this value.

The Simple MLSD Algorithm
Initialize M = 0. Use the decision feedback detector to

obtain {x̂(n)|n ≤ D + L− 2}, where x̂i(n) is given by

sign

⎛
⎝yi(n)−

L−1∑
l=1

K∑
j=1

fij [l]x̂j(n− l)−
i−1∑
j=1

fij [0]x̂j(n)

⎞
⎠

(12)

Initialize a Markov state set X−1, which contains only the
zero state, i.e.,

X−1 = {xL(−1)}, xL(−1) = [0T , . . . ,0T ]T (13)

Let x̂L(L−1) = [x̂(0)T , x̂(1)T , . . . , x̂(L−1)T ]T . Compute
the values of the paths connecting xL(−1) and x̂L(L − 1);
also compute all the values of the Markov states passed by

this path.

The algorithm then performs the following three steps re-

cursively for eachM .

In step 1, we compute x̂(M+D+L−1) using the decision
feedback algorithm (12).

In step 2, we carry out the optimality examination for

x̂(M). The truncated observation sequence and the decision
sequence involved in the examination are {y(n)|M − D <
n < M +D + L − 1} and {x̂(n)|M − D − L + 1 < n <
M +D + L− 1}, respectively. We say x̂(M) passes the ex-
amination if and only ifM ≥ L +D − 1 and Inequality (8)
holds for allM −D < n < M +D + L− 1.

If x̂(M) does pass the examination, we construct aMarkov
state setXM as follows: for all Markov states xL(M − 1) =
[x(M −L)T ,x(M −L+1)T , . . . ,x(M − 1)T ]T inXM−1,
we letxL(M) = [x(M−L+1)T , . . . ,x(M−1)T , x̂(M)T ]T

be a Markov state in XM . We then compute the state value

ΓM+L(x̂L(M + L)).
If x̂(M) does not pass the examination, in step 3, we con-

struct the Markov state setXM as follows: for each Markov

state xL(M−1) = [x(M−L)T ,x(M−L+1)T , . . . ,x(M−
1)T ]T inXM−1, we add theMarkov statesxL(M) = [x(M−
L+1)T , . . . ,x(M−1)T ,x(M)T ]T corresponding to all pos-

sible values of x(M) into the Markov state setXM . We then

compute the values of all the paths connecting the states in

XM−1 and the states inXM . We also compute values of all

the paths connecting the states in XM to the Markov state

x̂L(M + L). The values for the states in XM and the state

value ΓM+L(x̂L(M + L)) are computed.
LetM =M + 1 and repeat the three steps forM . ♦
Since if x̂(M) passes the optimality examination, we know

xML(M) = x̂(M), theML route must pass one of theMarkov
states in Markov state setXM at time indexM .

In step 3, when we compute the state value ΓM+L(x̂L(M+
L)), all values of the Markov states along the pathes from the

states inXM to x̂L(M+L) are also obtained. Consequently,
in step 2, we do not need extra computation to obtain the val-

ues of the states in XM since they are all on the paths from

states inXM−1 to x̂L(M +L− 1). Since the simple MLSD
algorithm always compute the values of the Markov states in

XM , the values of all the states on the ML path must have

been enclosed.

The computation of the simple MLSD algorithm contains

three parts.

The first part is the computation to obtain the suboptimal

decision sequence {x̂(n)}. This complexity is in the order of
O(LK2) per symbol.

The second part is to carry out the optimality examina-

tion for x̂(n) (for each n) and update the path values and
state values if x̂(n) passes the examination. Since we do not
perform the examination on any sequence other than {x̂(n)},
by sharing temporary results among successive examinations,

the complexity of running the examination is in the order of

O(LK2) per symbol. If x̂(n) passes the examination, we
need to compute the state value Γn+L(x̂L(n + L)). Fortu-
nately, since all paths connecting the states inXn and x̂L(n+
L) pass the Markov state x̂L(n+L− 1), whose value has al-
ready been obtained in previous steps corresponding to time

index n− 1. To obtain the state value of x̂L(n+L), we only
need to compute the value of the path connecting x̂L(n+L−
1) and x̂L(n+L). The overall complexity of the second part
is then in the order of O(LK2) per symbol vector.

The third part is the path values and state values updates

when x̂(n) does not pass the examination. This part of com-
plexity is in the order of O(2LK) per symbol.

Theorem 2 Assume the probability of symbol detection error
of the decision feedback detector goes to zero as σ → 0. If
the input sequence is of infinite length, the complexity of the
simple MLSD is in the order of O(LK2) per symbol as σ →
0. If the input sequence has a finite length, then the worst case
complexity per symbol of the simple MLSD algorithm is in the
order of O(2LK).

We can conceptually think the MLSD algorithm contains

three components. We have an asymptotically efficient sub-

optimal sequence detector, whose symbol detection error goes

to zero as σ → 0. We also developed an asymptotically effi-
cient optimality examination method, that can check whether

each vector of the obtained sequence is identical to its ML

sequence correspondence. If we are unable to tell whether

a particular vector is in the ML sequence or not, we use a

backup search plan similar to the VA to make sure we do not

miss the ML route.

Note that in the VA, a Markov route is eliminated only

when it passes the same state at a particular time index with

anotherMarkov route, who achieves a lower state value. There-

fore, a route comparison in the VA can only disprove, rather
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than verify, the optimality of a Markov route. In other words,

no matter how small the state value is, we cannot say a route

indeed gives the truncatedML sequence unless all the survival

routes merge naturally. The optimality examination used in

the simple MLSD algorithm, on the other hand, can verify,

rather than disprove, the optimality of a vector in a truncated

decision sequence.

Fig. 1. Illustration of the optimality examination in the simple
MLSD algorithm.

The idea of designing the optimality examination method

can be explained using the Markov graph illustrated in Fig-

ure 1. Suppose the Markov states corresponding to the actual

source sequence are given by the solid dots. We term these

Markov states and the paths connecting them the actual states

and the actual paths, respectively. We want to check wether

the particular state at time index M is optimal, i.e., whether

the ML route passes the Markov state illustrated by the solid

dot at time indexM . Since when the noise power is small, the

values of the actual paths are close to zero, while the values

of other erronic paths are, in general, significantly lower than

zero. If a route does not pass the actual state at time indexM ,

we say it makes a decision error at time indexM . Suppose the

erronic route merges with the actual route after making sev-

eral decision errors, as shown by “erronic route 1” in Figure

1. Due to the fact that all the values of the actual routes are

close to zero, the sum log likelihood of the erronic route are

usually lower than the sum log likelihood of the actual route.

Now, suppose the erronic route does not merge with the ac-

tual route after making significant number of decision errors,

as illustrated by “erronic route 2” in Figure 1. We can con-

struct a new route that connects the actual paths to the erronic

route, as illustrated by the dotted route in Figure 1. Although

in making such connection, the constructed route also makes

several decision errors and hence can have low sum log like-

lihood value, the value can still be larger than the sum log

likelihood of erronic path 2 since the number of decision er-

rors made by erronic route 2 is much more significant.

Note that as long as the probability of symbol detection

error of the ML detector can go to zero as σ → 0, without
requiring Assumption 1, we can find asymptotically efficient

optimality examination method, similar to the one presented

in Theorem 1, with a complexity per symbol in the order of

O(LK2). However, if Assumption 1 is not true, finding an
asymptotically efficient suboptimal detector with a complex-

ity of O(LK2) per symbol becomes non-trivial, if not impos-
sible.

4. CONCLUSION

We considered the maximum likelihood sequence detection

(MLSD) problem of transmitting a sequence of binary vec-

tor symbols over a vector intersymbol interference channel.

We show that as the signal to noise ratio (SNR) goes to in-

finity, the ML sequence can be obtained with a complexity of

O(LK2) per symbol, where L is the number of channel taps
and K is the vector length of the source symbol, under cer-

tain conditions. Such a complexity is no higher in order than

any of the efficient sequence detectors, including suboptimal

ones, that can achieve diminishing symbol detection error as

SNR goes to infinity.
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