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ABSTRACT
In this paper, we propose a new pilot-aided channel estima-

tor. Among the existing approaches, some are based on adap-
tive algorithms, but they are outperformed by methods where
the channel is modeled by an AR or an ARMA process. In that
case, estimating the model parameters from noisy observations
and selecting the model orders are challenging problems. To
avoid them, we propose to view the channel estimation as a re-
alization issue. By taking advantage of the subspace methods
for identi cation, the proposed estimator provides the system
matrices in the state-space representation of the channel di-
rectly from the output observations. At that stage, the channel
process can be estimated using a Kalman lter. This method
has the advantage of being non-iterative and avoiding an a pri-
ori model for the channel.
Index Terms— Identi cation, Rayleigh channels, Kalman

ltering.

1. INTRODUCTION

In mobile communications, high speeds of terminals and
scatterers cause Doppler effects that can seriously affect the
reception performance. Thus, channel estimation is a major
challenge for reliable wireless transmissions.
The channel is usually charaterized by its physical prop-

agation parameters such as the path delays, path phases, path
frequencies, path angles of arrival, etc. Therefore, in an en-
vironnment with no direct line-of-sight, the statistical model
presented by Jakes [2] is widely accepted as a realistic chan-
nel model. Thus, the real and imaginary parts of the chan-
nel are decorrelated and have the same power spectral density
(PSD) which is assumed to be bandlimited, U-shaped, exhibit-
ing twin peaks at ±fd where fd is the maximum Doppler fre-
quency. The corresponding discrete-time normalized autocor-
relation function is then given by:

Rtheo
h [k] = J0 (2πfdn

|k|) ∀ k ∈ Z (1)

where J0(.) denotes the zero-order Bessel function of the rst
kind and fdn

is the normalised maximum Doppler frequency.
The most conventional strategy to estimate the channel is

to transmit pilot bits. In that case, two families of methods
have been proposed.
One approach consists in estimating the channel from the

noisy observations of the channel, but does not exploit any sta-
tistical properties of the Rayleigh fading channel such as (1).
Thus, Kalofonos et al. [1] propose to estimate the channel by

means of the Least Mean Square (LMS) or Recursive Least
Square (RLS) algorithms. However, both adaptive estimators
are outperformed by model based methods, which constitutes
the second family of pilot-aided estimators.
The purpose of this second approach is to choose an a pri-

ori model for the channel process and to use Kalman algo-
rithm. AutoRegressive (AR) or ARMoving Average (ARMA)
models are usually considered for the sake of
simplicity [3]-[6]. Nevertheless, two issues must be investi-
gated: the selection of the order and the parameter estimation.
In the following, let us focus our attention on the AR model.
In [3], an off-line AR parameter estimation is based on

the Yule-Walker equations, using the theoritical autocorrela-
tion function (1) of the Rayleigh fading channel. However,
this approach requires the preliminary estimation of the max-
imum Doppler frequency. In [3], Wu et al. suggest using a
second-order AR model. Nevertheless, their solution is debat-
able because the resulting spectrum of a low-order AR process
exhibits twin peaks at ± fd√

2
and results in a poor match to the

desired bandlimited channel process. A better approximation
of the spectral characteristics of a Rayleigh fading channel can
be obtained by considering a much higher order AR model.
However, the higher the order, the higher the computational
cost. In addition, according to Baddour et al. [7], the chan-
nel autocorrelation matrix used in Yule-Walker equations may
become ill-conditioned. To overcome this dif culty, the au-
thors propose to add a small value ε (for instance ε = 10−8

when fdn
= 0.05) to the diagonal of the channel autocorre-

lation matrix. In that case, the resulting channel corresponds
to the Jakes process disturbed by a white Gaussian noise with
variance ε.
Another method consists in estimating the AR parameters

from the noisy observations with no information on fd. It
can be carried out by using an Error-in-variables (EIV) based
method, which can be seen as the Noise Compensated Yule-
Walker equations [4]. As an alternative, the AR parameters
and the channel process can be jointly estimated by using mu-
tually interactive lters. Thus, Davis et al. [6] propose to cou-
ple a RLS estimator which provides the AR parameters and a
Kalman lter which provides the channel sample estimates.
However, as only an in nite-order AR process can lead to

the bandlimited DSP [7], one has to select an order as high as
possible.
In this paper, instead of selecting an a priorimodel and ex-

plicitly estimating the corresponding parameters, we propose
to view the channel estimation as a realization issue. For this
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purpose, we use subspace methods for system identi cation
initially developed in the eld of control [8]. They provide the
matrices in the state-space representation by using an estima-
tion of the correlation function of the noisy observations. Once
this so-called “realisation issue” is solved, a Kalman lter can
be used to estimate the channel samples during the training
step. Thus, the proposed approach does not require neither the
preliminary Doppler frequency estimation nor an a priori ex-
plicit model for channel. To avoid any confusion, it should be
noted that this method is not related to the subspace based ap-
proach for identi cation of multichannel FIR lter developped
by Moulines et al. in [10].
The remainder of the paper is organized as follows: In sec-

tion 2, the state space representation of the channel process is
recalled. In section 3, the subspace identi cation methods is
presented. In section 4 , the relevance of the proposed estima-
tor is illustrated by numerical results.

2. STATE SPACE REPRESENTATION

Let us consider a radio communication system using pilot
bits for channel estimation. After a preprocessing, one can ob-
tain the following noisy observation z(k) of the channel sam-
ple h(k) at time k:

z(k) = h(k) + v(k) (2)

where v(k) is a complex white Gaussian noise of variance σ2
v .

Since subspace methods for identi cation can be used pro-
viding the data are real, we propose to deal with the real part
zR(k) of the noisy observations z(k). Indeed, given its statis-
tical properties, the complex fading process, its real part hR

and its imaginary part can be described by the same system
matrices in the state-space representation.
For this purpose, let us introduce a state vector x(k) ∈ Rp

at time k, where p denotes the model order1. The state vector
x(k) and zR(k) satisfy the following observation equation:

zR(k) = Hx(k)︸ ︷︷ ︸
hR(k)

+vR(k) (3)

where vR(k) is the real part of the complex noise v(k).
It should be noted that the explicit relation between the

state x(k) and hR(k) is not known since no a priori model of
channel is considered.
Moreover, the state vector is assumed to be updated as fol-

lows:
x(k + 1) = Φx(k) + w(k) (4)

where Φ and H are real matrices of appropriate dimensions
and w(k) ∈ Rp is a noise vector, assumed to be white, zero-
mean and stationary with covariance matrix Q. We also as-
sume that the state x(k) is decorrelated with w(k) and vR(k).
In the following, we take advantage of the subspace meth-

ods for identi cation [8] to estimate the quadruple
[H,Φ, Q, σ2

vR
]. Then, a Kalman lter is used to retrieve the

complex fading channel samples.

1The choice of the model order will be explained in section 3.

3. STOCHASTIC SUBSPACE METHODS FOR
IDENTIFICATION

This section reviews subspace methods [8] that make it
possible to identify the state-space representation of a stochas-
tic process directly from the noisy observations.

3.1. Main principles

The core of the subspace methods for identi cation is to es-
timate, from noisy observations, the extended (s > p) observ-
ability matrix of a state-space representation (3)-(4), de ned
as follows:

Γs =

⎡
⎢⎢⎢⎣

H
HΦ
...

HΦs−1

⎤
⎥⎥⎥⎦ (5)

Indeed, H and Φ can be retrieved from Γs, since H corre-
sponds to the rst row of Γs and Φ is given by:

Φ = Γ†s−1Γs (6)

where † denotes the pseudo-inverse operator and Γs corre-
sponds to Γs without its rst row.
For this purpose, the 2s×(N−2s+1)Hankel matrix Z0/2s−1

constructed from the N observations zR(k) is introduced:

Z0/2s−1=

⎡
⎣ Z0/s−1

Zs/s

Zs+1/2s−1

⎤
⎦ (7)

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

zR(0) zR(1) · · · zR(N − 2s)
zR(1) zR(2) · · · zR(N − 2s+ 1)
...

...
. . .

...
zR(s) zR(s+ 1) · · · zR(N − s)

zR(s+ 1) zR(s+ 2) · · · zR(N − s+ 1)
...

...
. . .

...
zR(2s− 1) zR(2s) · · · zR(N − 1)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

In the following, N ′ = N − 2s+ 1.
Van Overschee et al. proved that the extended observability
matrix Γs can be estimated from the two following orthogonal
projections:

Os = Zs/2s−1/Z0/s−1 (8)

Os−1 = Zs+1/2s−1/Z0/s (9)

Indeed, when N ′ → ∞, these orthogonal projections can be
expressed as the following products:

Os = ΓsXs (10)

Os−1 = Γs−1Xs+1 (11)

where Xs and Xs+1 respectively denote the state sequence
generated by a bank of non-steady Kalman lters working in
parallel on each of the columns of the block Hankel matrix
Z0/s−1 and Z0/s. Moreover, one has:

Span(XT
s ) = Span(O

T
s ) (12)

Span(XT
s+1) = Span(O

T
s−1) (13)
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Span(Γs) = Span(Os) (14)

Span(Xs+1) = Span(Os−1) (15)

To obtain Γs and Xs, the authors in [8] propose to use the
Singular Value Decomposition (SVD) of the weighted orthog-
onal projectionW1OsW2:

W1OsW2 =
[
U1 U2

] [
S1 0
0 0

] [
V T

1

V T
2

]
(16)

where S1 is a diagonal matrix that contains the p non-zero sin-
gular values ofW1OsW2. W1 ∈ Rs×s andW2 ∈ RN′×N′

are
two weighting matrices such that W1 is full rank and
rank(Z0/s−1) = rank(Z0/s−1W2).
The choice of W1 and W2 determine the state-space ba-

sis in which the representation will be identi ed. Different
choices have been investigated, leading to various published
methods. Then, Γs can be obtained as follows:

Γs = W−1
1 U1S

1/2
1 (17)

At that stage, H and Φ can be easily retrieved. In addi-
tion, Van Overschee et al. proposed a way to estimate the
covariance matrixQ and the variance σ2

v from the least square
residuals, ρw(k) and ρv(k), de ned as follows:(

ρw(k)

ρv(k)

)
=

[
Xs+1

Zs/s

]
−

[
Φ
H

]
X̂s. (18)

and
1

N ′

(
ρw(k)

ρv(k)

) (
ρw(k)

ρv(k)

)T

=

[
Q S
S σ2

v

]
. (19)

In the next section, we will focus on the N4SID method
[8] in whichW1 = Is×s andW2 = IN ′×N ′ .

3.2. Application to channel estimation

We propose to use the N4SID method for channel esti-
mation. Indeed, in the framework of channel estimation, the
number of available observations corresponds to the number
of pilot bits. Therefore, N is nite and has to be as low as
possible. Van Overschee et al. studied the behavior of the
subspace identi cation methods when N is nite. They sug-
gest using the RQ decomposition 1√

N ′
Z0/2s−1 to compute the

orthogonal projections Os and Os−1.

1√
N ′

⎡
⎣ Z0/s−1

Zs/s

Zs+1/2s−1

⎤
⎦ =

⎡
⎣R11 0 0

R21 R22 0
R31 R32 R33

⎤
⎦

⎡
⎣QT

1

QT
2

QT
3

⎤
⎦ (20)

Thus, Os and Os−1 can be written as follows:

Ôs =

[
R21

R31

]
QT

1 and Ôs−1 =
[
R31 R32

] [
QT

1

QT
2

]
(21)

In addition, as Q1 is an orthogonal matrix, the SVD of Os

can be calculated by means of the SVD of
[
R21 R31

]T . One
has: [

R21

R31

]
=

[
Û1 Û2

] [
Ŝ1 0

0 Ŝ2

] [
V̂ T

1

V̂ T
2

]
. (22)

where Ŝ1 corresponds to the p dominant singular values. The
estimate of Γs corresponds to:

Γ̂s = Û1Ŝ
1/2
1 . (23)

As the N4SID method is consistent [9], Γs−1 and Xs+1 can
be estimated from Γ̂s. Therefore, using (18) and (19) makes it
possible to get the estimation ofH , Φ, Q and σ2

vR
.

Once the quadruple [H,Φ, Q, σ2
vR
] is estimated, a Kalman

lter is used to retrieve the complex fading channel sample.

4. NUMERICAL RESULTS AND CONCLUSION

In this section, we study the relevance of the proposed
method for channel estimation. For this purpose, we carry out
a comparative study between the method presented here, the
EIV estimator [4] and the RLS methods [1].
In our simulations, the fading process to be estimated is

simulated using the Jakes’ model [2] with 2048 simulators. p
is assigned to 5. The normalized maximum Doppler frequency
varies from 0.0625 to 0.260. The number of available channel
observations N is equal to 80. The simulations illustrated in
Fig.1 and Fig.2 shows that the proposed method provides bet-
ter estimation than the EIV method based estimator and the
RLS, whatever the maximum Doppler frequency may be.
The method we propose is not iterative, which is a great

advantage. Like various channel estimators, it requires at least
80 pilots, which is slightly higher than the number proposed
in the cdma2000 recommandations [12].
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Fig. 1. Real part of the estimated channel for SNR=20dB
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Fig. 2. Real part of the estimated channel for SNR=10dB

APPENDIX: is it relevant to retrieve a canonical
parameterization ?

A linear stochastic process can be represented by an in-
nite number of linear state-space representations which are
equivalent up to a non-singular transformation T . However,
the tranfer function is unique.
In some previous studies such as [11], the authors suggest

modeling the channel by a pth order AR process. To estimate
the AR parameters, they propose to use the subspace methods
for identi cation to obtain the quadruple [Φ,H,Q,R] corre-
sponding to the following state-space representation:{

x(k + 1) = Φx(k) + w(k)

zR(k) = HxT (k) + vR(k)
(24)

where

zR(k) = [zR(k) zR(k − 1) · zR(k − p+ 1)]
T (25)

and vR(k) is a p × 1 white noise vector, H and Φ are p × p
matrices.
Then, they propose to explicitly nd the transformation T

that makes it possible to obtain the canonical state-space repre-
sentation of the system, in which the canonical transition ma-
trix is a companion matrixA de ned from the AR parameters
ai=1..p and the canonical observation matrix is the identity ma-
trix Ip×p. For this purpose, they propose to use the extended
observability matrix which should satisfy:

ΓsT =

⎡
⎢⎢⎢⎢⎢⎣

H

HΦ

HΦ2

...
HΦs−1

⎤
⎥⎥⎥⎥⎥⎦T =

⎡
⎢⎢⎢⎢⎢⎣

Ip×p

A

A2

...
As−1

⎤
⎥⎥⎥⎥⎥⎦ (26)

Given (26), T should correspond to the inverse ofH.
However, in real cases, this method is debatable for the

following reasons:

• The nite number of pilot data induces an error in the
estimation of Γs. The resulting estimation of the obser-
vation matrixH may be singular.

• When Ĥ is non-singular, we have noticed that the re-
sulting estimated AR parameters could correspond to
an unstable system. Indeed, Â is not exactly a com-
panion matrix since the elements of the subdiagonal for
instance are not exactly equal to 1. As the fading chan-
nel process is not a nite-order AR process [7], the state-
space representation 24 is not equivalent to a state-space
representation of an AR process.

Therefore, it is hazardous to search the transformation T.
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