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ABSTRACT
Channel estimation for single-input single-output frequency- and time-
selective channels is considered using time- multiplexed training.
The time-varying channel is assumed to be well-described by a basis
expansion model using discrete prolate spheroidal sequences as the
bases (DPS-BEM). First, the popular linear least-squares approach
is exploited to estimate the basis expansion coef cients. Then the
issue of training power allocation is addressed. Finally, computer
simulation examples are presented where the channel is generated
via Jakes’ model.

Index Terms— Doubly-selective channels, channel estimation,
basis expansion models, training design

1. INTRODUCTION

Consider a doubly-selective single-input single-output (SISO) nite
impulse response (FIR) linear channel with symbol-rate impulse re-
sponse h(n; l) (channel response at time n to a unit input at time
n − l). In a basis expansion representation over a time-block n =
{0, 1, · · · , N − 1}, it is assumed that [2]

h(n; l) =

Q∑
q=0

wq(l)ψq(n) (1)

where ψq(n) is the q-th basis function and the basis expansion pa-
rameter wq(l) is xed over the data block. With s(n) denoting the
transmitted symbol sequence, the received sequence in the presence
of additive noise η(n) is given by

x(n) =

Q∑
q=0

ψq(n)

[
L∑
l=0

wq(l)s(n− l)

]
+ η(n). (2)

Let Ts denote the symbol interval. For a channel with a multipath
delay spread of τd sec and a Doppler spread of fd Hz, in the com-
plex exponential basis expansion model (CE-BEM) [7, 3] one takes
ψq(n) := ejωqn, ωq := 2π[q − Q/2]/N , L := �τd/Ts� and
Q := 2�νDmaxN� where νDmax := fdTs is the maximum normal-
ized Doppler bandwidth. In the discrete prolate spheroidal sequence-
based BEM (DPS-BEM), the DPS vectors ψq ∈ R

N (called Slepian
sequences in [10], which are time-windowed DPS sequences) with
elements ψq(n) for n ∈ {0, ..., N − 1}, are eigenvectors of the ma-
trix C ∈ R

N×N , ful lling Cψq = λqψq where λq are eigenvalues
of matrix C with its (y, z)th entry given by sin[2π(y−z)νDmax]

π(y−z)
[8].

The Fourier basis expansion (i.e. CE-BEM) has the major draw-
back that the rectangular window associated with the truncated dis-
crete Fourier transform (DFT) introduces spectral leakage [6], which
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results in a oor in the bit error rate (BER) in CE-BEM-based ap-
proaches [10]. DPS/Slepian sequences are a good alternative as a ba-
sis set to approximate bandlimited channels alleviating the spectral
leakage of CE-BEM [10]. In this case one takes Q = �2νDmaxN�
[10].

To acquire the channel state information (CSI) at the receiver,
training symbols are usually periodically inserted during transmis-
sion, which is known as pilot symbol aided modulation (PSAM) [1].
Optimization of PSAM for CE-BEM based doubly-selective chan-
nel models has been considered in [4] where training sequence is
designed to minimize the channel estimation MSE and furthermore,
an estimated channel-based average capacity lower bound is max-
imized to select certain training parameters such as training power
allocation. No such considerations are to be found in [10] where it
is shown that DPS-BEM-based approaches signi cantly outperform
CE-BEM-based approaches for doubly-selective channel estimation
and data detection. The main objective of this paper is to consider
certain aspects of PSAM parameter design for DPS-BEM, following
the CE-BEM results of [4].

In this paper, we consider channel estimation for doubly-selective
SISO channel described by DPS-BEM. A linear least-squares (LS)
estimator is presented. Using the developed channel estimation vari-
ance expression, we cast the power allocation problem as one of op-
timizing a signal-to-noise ratio. Relationship to existing results is
discussed in some detail in Sec. 5.

Notation: SuperscriptsH and T denote the complex conjugate
transpose and transpose operations, respectively. δ (·) is the Kro-
necker delta function and IN is the N × N identity matrix. The
symbol ⊗ denotes the Kronecker product.

2. LEAST-SQUARES CHANNEL ESTIMATION

2.1. Model Development

We consider block transmission as in [4], where transmitted symbols
are collected intoN×1 blocks with s = [s(0), s(1), · · · , s(N − 1)]T

as the 0th block and received x(n)’s are also collected into blocks
with x = [x(0), x(1), · · · , x(N − 1)]T as 0th block. To avoid
inter-block interference (IBI), as in [4], L guard zeros are inserted
in s (per block) at the transmitter. Then (2) is rewritten as

x =

Q∑
q=0

DψqWqs + η, (3)

where η is de ned similarly to x, Dψq = diag[ψq] with ψq :=
[ψq(0), ψq(1), ..., ψq(N − 1)], andWqs are N ×N lower triangu-
lar Toeplitz matrices with 1st column [wq(0), wq(1), · · · , wq(L), 0,
· · · , 0]T . Since ψq(n) are known at receiver, the objective of chan-
nel estimator is to nd basis expansion parameters in Eq. (1) from
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the received samples corresponding to the training symbols. The
proposed channel estimation relies on timemultiplexing training sym-
bols at known positions.

As in [4], each transmitted block s consists of J segments (sub-
blocks) of training and information symbols b(n) and c(n), respec-
tively, and each segment has the same length. Then the general struc-
ture of s is

s = [bT1 , c
T
1 , ..., b

T
J , c

T
J ]T , (4)

where bj with lengthNb and cj with lengthNc, ∀j ∈ [1, J ], denote
training and information symbol subblocks, respectively. Therefore,
N = J(Nb + Nc) with Nb > L. Let M = Nb + Nc denote
the subblock size. Obviously, the rst L symbols in the “training
part” of the j-th subblock of the received signal are contaminated
by information symbols in the preceding (j − 1)th subblock. In the
similar way, the rst L symbols in the “information part” of the j-
th subblock of the received signal are also contaminated by the last
L training symbols in the current j-th subblock. In order to avoid
the inter-subblock interference (ISBI) so that channel estimation is
decoupled from data detection, we will choose the rst and the last
L symbols in each training subblock to be zeros, as in [4].

De ne bj := [b((j−1)M), b((j−1)M+1), ..., b((j−1)M+
Nb − 1)]T . Further de ne D̄ψq,j

= diag{ψ̄q,j} where ψ̄q,j =
[ψq((j − 1)M + L), ψq((j − 1)M + L+ 1), ..., ψq((j − 1)M +
Nb − 1)]T . Then the ISBI free received subblock can be written as

x̄b,j =

Q∑
q=0

D̄ψq,j
W̄qbj + η̄b,j , (5)

where x̄b,j := [xb((j−1)M+L), xb((j−1)M+L+1), ..., xb((j−
1)M + Nb − 1)]T , η̄b,j is de ned similarly, and (Nb − L) × Nb
matrix W̄q is

W̄q =

⎡
⎢⎣
wq(L) . . . wq(0)

. . .
...

. . .
wq(L) . . . wq(0)

⎤
⎥⎦ .

Gathering training symbols per block, we obtain

x̄b =

Q∑
q=0

⎡
⎢⎣
D̄ψq,1W̄qb1

...
D̄ψq,J

W̄qbJ

⎤
⎥⎦ + η̄b. (6)

According to the commutativity property of convolution, we have
W̄qbj = Bjwq with wq := [wq(0), ..., wq(L)]T and Bj a (Nb −
L)× (L+ 1) Toeplitz matrix given by

Bj :=

⎡
⎢⎣

bj(L) . . . bj(0)
...

. . .
...

bj(Nb − 1) . . . bj(Nb − L− 1)

⎤
⎥⎦ , (7)

where bj(l) := b((j − 1)M + l). Therefore, (6) can be rewritten as

x̄b = Φw + η̄b, (8)

with simple substitutions, where the [J(Nb−L)]× [(Q+1)(L+1)]
matrix

Φ :=

⎡
⎢⎣
D̄ψ0,1B1 ... D̄ψQ,1

B1

...
. . .

...
D̄ψ0,J

BJ . . . D̄ψQ,J
BJ

⎤
⎥⎦ , (9)

w := [wT
0 ,w

T
1 , . . . ,w

T
Q]T . (10)

2.2. Least-Squares Channel Estimation

The linear least-squares (LS) channel estimator based on (8) is

ŵ = Λx̄b, (11)

where Λ = (ΦH
Φ)−1

Φ
H . De ne the channel estimation error

as w̃ := w − ŵ. Then the covariance matrix of w̃ is (σ2
η =

E{|η(n)|2})Rw̃ := E[w̃w̃H ] = σ2
η

(
Φ
H
Φ
)−1. Using [5, Lemma

1], the MSE of w̃ is lower-bounded as (S := (Q+ 1)(L+ 1))

σ2
w̃ := tr(Rw̃) ≥ σ2

η

S∑
i=1

1

[ΦHΦ]i,i
, (12)

with equality iff Φ
H
Φ is a diagonal matrix. By the arithmetic-

geometric mean inequality,

S∑
i=1

1

[ΦHΦ]i,i
≥ S

(
S∏
i=1

1

[ΦHΦ]i,i

)1/S

(13)

where the equality holds iff
[
Φ
H
Φ
]
i,i
are all equal. Equivalently,

we need Φ
H
Φ to be a diagonal matrix with all its diagonal compo-

nents equal. Suppose that we pickΦ
H
Φ = αI(Q+1)(L+1) for some

α > 0. Then by (9) we must have
∑J
j=1B

H
j D̄

H
ψq1,j

D̄ψq2,j
Bj =

αIδ(q1 − q2). It turns out that

J∑
j=1

D̄
H
ψq1,j

D̄ψq2,j
≈M−1

INb−Lδ(q1 − q2) (14)

whereas in case of CE-BEM the corresponding result is exactly true.
To justify (14), consider [9, Sec. 5.3.1] where it is “shown” (heuristi-
cally) that for largeN , the solutionsψq toCψq = λqψq (see Sec. 1
for DPS vectorsψq) can be approximated by ψ̃q = [1, e−2π(q−Q/2)/N ,

e−4π(q−Q/2)/N , · · · , e−2π(q−Q/2)(N−1)/N ]T with λq = 1 for 0 ≤
q ≤ Q = �2νDmaxN� and λq = 0 for q ≥ Q + 1. That is, we
have CE-BEM for which (14) holds exactly. [To obtain real-valued
DPS vectors one can create sine and cosine functions from conju-
gate pairs of ψ̃q .] Alternatively, for “smaller” record lengths, one
can numerically calculate (14). We have done so and found that for
the parameters used for simulations in this paper, the (normalized
average) error norm in (14) is less than 1% for q1 = q2 and less
than 10% for q1 �= q2 as νDmax varies from 0.001 to 0.01, where we
average over all admissible values of q, 0 ≤ q ≤ Q, and normalize
with the norm ofM−1INb−L.

Under (14), following [4], we pick Nb = 2L + 1 with bTj =

[0TL , b,0
T
L ]T where 0L is a sizeL null column, in which caseΦH

Φ =
b2

M
I(Q+1)(L+1). Note that b2/M = Jb2/N . Under this optimal

choice, the lower bound in (12) is achieved, yielding

σ2
w̃ =

Nσ2
η

Pb
(L+ 1)(Q+ 1), Pb := Jb2, (15)

where Pb denotes total training power in the given data block.

3. TRAINING POWER ALLOCATION

We assume that the time-varying channel h(n; l) is zero-mean, WSS
complex Gaussian with the same variance σ2

h for each tap. We also
assume that the channel taps are mutually independent, i.e. h(n; l) is
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WSSUS. The received information symbols at the received antenna
can be expressed as

xc(n) =

L∑
l=0

ĥ(n; l)c(n− l)

︸ ︷︷ ︸
:=xs(n)

+
L∑
l=0

[h(n; l)− ĥ(n; l)]c(n− l) + η(n)

︸ ︷︷ ︸
:=xη(n)

(16)

where ĥ(n; l) =
∑Q
q=0 ŵq(l)ψq(n) is used for data detection. There-

fore, the signal power is given by

σ2
xs(n) := E

{
|xs(n)|2

}
=

P̄c

L∑
l=0

[
Ew

{
E

{∣∣∣h(n; l)− ĥ(n; l)
∣∣∣2 |w}} + E

{
|h(n; l)|2

}]

= P̄c
[
σ2
h̃(n) + (L+ 1)σ2

h

]
, P̄c := E{|c(n)|2}, (17)

and the effective noise power is

σ2
xη(n) = E

⎧⎨
⎩
∣∣∣∣∣
L∑
l=0

[h(n; l)− ĥ(n; l)]c(n− l)

∣∣∣∣∣
2
⎫⎬
⎭

+E
{
|η(n)|2

}
= P̄cσ

2
h̃(n) + σ2

η (18)

where σ2
h̃
(n) :=

∑L
l=0 Ew

{
E{|h(n; l)− ĥ(n; l)|2|w}

}
and P̄c

is the average power of information symbols. De ne

Wl := [w0(l), w1(l), ..., wQ(l)]T ,

W := [W0,W1, ...,WL]T . (19)
By (10) and (19), we have

W = Ωw, (20)

for some permutation matrix Ω (satisfying ΩHΩ = I). We may
rewrite σ2

h̃
(n) as

σ2
h̃(n) =

L∑
l=0

EW

{
E

{∣∣∣h(n; l)− ĥ(n; l)
∣∣∣2 |W}}

= tr
{

Ψ(n)EW
{

cov{Ŵ, Ŵ|W}
}

Ψ(n)H
}
, (21)

where Ξ(n) := [ψ0(n), ψ1(n), ..., ψQ(n)] and Ψ(n) := I(L+1) ⊗
Ξ(n). Based on (19) and (20), we have

EW
{

cov{Ŵ, Ŵ|W}
}

= ΩEW {cov{ŵ, ŵ|W}}︸ ︷︷ ︸
=:R

w̃

ΩH . (22)

Therefore, the time-average of σ̄2
h̃
over information subblocks in the

current block is

σ̄2
h̃ := (N − JNb)

−1
∑
n

σ2
h̃(n) ≈ N−1

N−1∑
n=0

σ2
h̃(n)

=
1

N
tr
{

ΩRw̃ΩH
}

=
1

N
σ2
w̃ (23)

where we have used
∑N−1
n=0 ΨH(n)Ψ(n) = I(L+1)(Q+1). Simi-

larly, the time averaged signal and noise powers turn out to be σ̄2
xs =

P̄c[σ̄
2
h̃

+ (L + 1)σ2
h] and σ̄2

xη = P̄cσ̄
2
h̃

+ σ2
η . Therefore, we obtain

an effective average SNR for (16) as

SNRd = σ̄2
xs/σ̄

2
xη. (24)

De ne the total information power and received signal power
Pc = JNcP̄c and P := Pb + Pc, respectively. De ne the training
power overhead

β := Pb/ [Pc + Pb] . (25)

Our objective is to maximize SNR with respect to β under the con-
straint of a xed P . Thus, incorporating those constraint-carrying
variables into (24) and using the developed expression for average
signal and noise powers in (24), we obtain the unconstrained cost

SNRd(β) =

(1−β)P
JNc

[σ̄2
h̃

+ (L+ 1)σ2
h]

(1−β)P
JNc

σ̄2
h̃

+ σ2
η

. (26)

Using the lower bound of LS estimator in (15), we can explicitly
write (24) as

SNRd(β) =
[
f1β

2 + f2β + f3
]
[g1β + g2]

−1 , (27)

where f1 = −[P(L + 1)σ2
h]/[NcJ ], f2 = [P(L + 1)σ2

h − (L +
1)(Q + 1)σ2

η]/[NcJ ], f3 = [(L + 1)(Q + 1)σ2
η]/[NcJ ], g1 =

σ2
η−[(L+1)(Q+1)σ2

η]/[NcJ ] and g2 = [(L+1)(Q+1)σ2
η]/[NcJ ].

Setting the rst derivative of SNRd(β) with respect to β to zero, we
obtain a quadratic equation in β with two roots, one of which is
negative (β < 0), and hence is excluded, and the other root is given
by

βopt =
g2
g1

[
−1 +

√
1 +

g1(f3g1 − f2g2)

g2
2f1

]
. (28)

4. SIMULATION EXAMPLES
In the following examples we consider a doubly-selective channel
with L = 2 in (2). We use binary phase shift keying (BPSK) mod-
ulation. Each transmitted block has J = 10 subblocks, and each
subblock has Nc = 30 information symbols and Nb = 2L+ 1 = 5
training symbols with optimal structure [0, 0, b, 0, 0]T , (b > 0). A
doubly-selective Rayleigh fading channel h(n; l) is simulated ac-
cording to [10, 11] with channel order L = 2, carrier frequency
of 2 GHz, data rate of 40 kbps, and thus, symbol duration Ts =
25μs. Therefore, each tap of the generated time-variant channel has
a Jakes’ spectrum; it is not generated using the assumed BEM mod-
eling. The 3 taps of the channel are mutually independent and the
channel power is also normalized to unity. The SNR refers to the av-
erage signal power per block divided by the average noise power per
block, where the signal power includes both training and information
symbols.

Example 1: LS Channel Estimation. In this case we pick
b = 1 leading to Pb = 10 and Pc = 300. We picked fd =40
Hz leading to νDmax = fdTs= 0.001 . The LS estimator (11) is
used to estimate w, and then the channel is estimated as ĥ(n; l) =∑Q
q=0 ŵq(l)ψq(n). Based on Mr Monte Carlo runs, the channel

estimation MSE is calculated as

MSE = (MrN)−1
Mr∑
i=1

N−1∑
n=0

L∑
l=0

|ĥ(i)(n; l)− h(i)(n; l)|2 (29)
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where superscript (i) denotes the results of the i-th run. In Fig. 1,
the lower bound in (15) is compared with the simulation results (av-
eraged over 200 Monte Carlo runs); also shown are ±σ bounds on
the simulation averages. It can be seen that the theoretical results
are consistent with the simulation results indicating that the optimal
pilot design does minimize channel MSE when using DPS-BEM.
Example 2: Training Power Allocation Here we vary training
power (by varying b) with xed total transmitted power. The BER
versus β (see (25)) based on simulation results (averaged over 1000
Monte Carlo runs) is shown in Fig. 2 for SNR of 15 dB where we
used a Viterbi detector based on the estimated channel for data de-
tection. We also varied νDmax. In Fig. 3, we plot the optimum theo-
retical values of β (derived in (28)) versus the received signal SNR.
Comparing Figs. 2 and 3, we see that the two show mutually con-
sistent results supporting our theoretical results: the optimal (simu-
lations based) β inferred from Fig. 2 is in good agreement with the
theoretical βopt of Fig. 3.

0 5 10 15 20 25 30
10 4

10 3

10 2

10 1

100

101

SNR (dB)

M
SE

Simu, MSE
Simu, MSE + σ
Simu, MSE  σ
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Fig. 1. Comparison between channel estimation MSE lower bound
in (15) and simulation-based results. νDmax=0.001 i.e. fd= 40 Hz
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Fig. 2. Simulations-based BER versus β (25) for SNR=15 dB.

5. COMPARISONS WITH EXISTING RESULTS

Our model development in Sec. 2.1 is exactly as in [4] except that
instead of CE-BEM as in [4] we use DPS-BEM. In [4] linear MMSE
channel estimator is used which requires knowledge of the noise
variance and of the covariance matrix E{wwH} of the channel
BEM coef cient; while the former may be known at the receiver, the
latter is seldom known. In [4] E{wwH} is assumed to be known
and diagonal. For Jakes’ model, the BEM coef cients for a given
tap are not mutually uncorrelated, hence the diagonal assumption
does not always hold true. In this paper we do not need to know

E{wwH} or make any assumption regarding its nature. [On the
other hand, performance of linear MMSE channel estimator is bet-
ter than that of the LS channel estimator; however, the difference
is negligible at SNRs ≥10 dB for the model considered in this pa-
per.] In [4] training power allocation is carried out by maximizing
a lower bound on average capacity whereas we do so by optimiz-
ing an effective SNR “for equalization.” In [4] channel MMSE is
linked to a channel capacity lower bound by using the fact that lin-
ear MMSE estimator is also MMSE estimator for jointly Gaussian
processes; we do not (yet?) have any such result. Ref. [10] is the
rst to apply DPS-BEM for doubly-selective channel modeling and
estimation. However, [10] does not consider pilot design.
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Fig. 3. Theoretical βopt (28) versus received signal SNR
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estimation using discrete prolate spheroidal sequences,” IEEE
Trans. Signal Proc., vol. 53, pp. 3597-3607, Sept. 2005.

[11] Y.R. Zheng and C. Xiao, “Simulation models with correct sta-
tistical properties for Rayleigh fading channels,” IEEE Trans.
Commun., vol. 51, pp. 920-928, June 2003.

III  436


