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ABSTRACT
In this paper, utilizing high resolution quantization theory, we an-
alyze the loss in average symbol error probability (SEP) for finite
rate feedback MISO systems with rectangular M -QAM constella-
tion. Assuming perfect channel estimation, no-feedback delay and
error-less feedback, for spatially i.i.d and correlated channels we de-
rive analytical expressions for loss in average SEP due to finite-rate
channel quantization. We then consider the high-SNR regime and
show that the loss associated with correlated case is related to the
loss associated with the i.i.d case by a scaling constant given by the
determinant of the correlation matrix. We also present simulation
results in support of the analytical expressions.

Index Terms: MISO systems, transmit beamforming, channel state

information, feedback, M -QAM, channel quantization, spatial correlation

1. INTRODUCTION
In a multiple-input and single-output (MISO) system, if the chan-
nel state information (CSI) is available at the transmitter, one can
achieve both the diversity and array gains with transmit beamform-
ing, whereas only diversity gain can be realized with space-time cod-
ing. In this paper we focus our attention on MISO systems where
CSI is conveyed from the receiver to the transmitter through a finite-
rate feedback link [1]-[4]. Optimum codebook design for ergodic ca-
pacity loss, a system performance metric, is proposed in [1]. In [3],
the problem is studied from a source coding perspective by formulat-
ing the finite-rate quantized MISO system as a general vector quan-
tization problem. By utilizing the high-resolution distortion analysis
of the generalized vector quantizer, tight lower bounds of the ergodic
capacity loss of a quantized MISO system over i.i.d and correlated
fading channels with both optimal and mismatched channel quantiz-
ers were obtained [3].

Average SEP, another important system performance metric, for
limited set of constellations has been studied with i.i.d fading chan-
nels based on approximating the statistical distribution of the key
random variable that characterizes the system performance. Specif-
ically both [1] and [2] characterized the absolute amplitude square
of the inner product between the channel direction and its quantized
version as a truncated beta distribution and used it to study effect
of quantization on average SEP. Similar to the capacity analysis,
SEP analysis for correlated channels using such statistical methods
have not met with much success. In this paper we make use of the
source coding based framework developed in [3] to study the aver-
age SEP loss in correlated Rayleigh fading channels with rectangular
M -QAM constellation. The application of the theory in [3] to this
problem is quite involved because of the complicated dependency
of the objective function on the random variables involved and the
results derived here serve to validate the general nature of the the-
ory [3]. In addition, the results provide interesting insight into the
more general and useful scenario of correlated channels with a more
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practical and relevant measure. The rest of this paper is organized as
follows. In Section 2, we introduce our system model. In section 3
we present the high resolution analysis. The average SEP loss ex-
pressions are derived in Section 4. Numerical and simulation results
are presented in Section 5. We conclude this paper in Section 6.

2. SYSTEM MODEL
We consider a MISO system with t antennas at the base station (BS)
and one antenna at the mobile station (MS). The channel between
the BS and the MS is modeled as a frequency-flat, slowly vary-
ing Rayleigh fading channel that is assumed to be constant over a
block of symbols. Dropping time index, for the sake of simplicity,
h ∈ Ct×1 is the correlated 1 MISO channel response with distribu-
tion given by h ∼ NC`0,Σh

´
. Let us denote by w ∈ Ct×1, the unit

norm beamforming vector at the BS. Then, the received signal at the
MS is given by y = wHhsm + n, where H is the Hermitian op-
erator and n is a zero-mean circularly symmetric complex Gaussian
random variable with E[|n|2] = 1. The transmitted two dimensional
modulation symbol is denoted by sm, which belongs to the rectangu-
lar M -QAM constellation with E[|sm|2] = ρ. The CSI is assumed
to be perfectly known at the receiver but only partially available at
the transmitter through a finite-rate feedback link of B bits per chan-
nel update. Specifically, a codebook C =

˘bv1, · · · , bvN

¯
, composed

of transmit beamforming vectors, is assumed to be known to both
the receiver and the transmitter, here N = 2B . Based on the chan-
nel realization h, the receiver selects the best code point bv from the
codebook and sends the corresponding index back to the transmit-
ter. Assuming no errors and no delay in the feedback link, at the
transmitter, the unit-norm vector bv is employed as the beamform-
ing vector, i.e. w = bv. the received signal can now be written as
y = 〈h, bv〉 · sm + n =

√
α · 〈v, bv〉 · sm + n, where v = h/‖h‖,

α = ‖h‖2 and 〈x, y〉 = xHy.

3. HIGH RESOLUTION THEORY
In this section we briefly summarize the asymptotic distortion analy-
sis of the generalized vector quantizer results in [3] that are relevant
for the analysis of average SEP loss of M -QAM constellation. It
is assumed that the source variable h is a two-vector tuple, (v, α),
where vector v ∈ Q represents the actual quantization variable of
dimension kq and α ∈ Z is the additional side information of dimen-
sion kz. The side information α is available at the encoder (receiver)
but not at the decoder (transmitter). The encoding or the quantization
process is denoted as bv = Q(v, α). The distortion introduced by

a finite-rate quantizer is defined as D = Eh

h
DQ

`
v, bv ; α

´i
, where

DQ

`
v, bv ; α

´
is a general non-mean-squared distortion function be-

tween v and bv that is parameterized by α. It is further assumed that
function DQ has a continuous second order derivative Wα(v), the
sensitivity matrix, with the (i, j)th element given by

wi,j =
1

2
· ∂2

∂ vi∂ vj
DQ

`
v , bv ; α

´ ˛̨̨˛
v=bv

. (1)

1We normalize the channel covariance matrix such that the mean of the
eigen values equals to one (equal to the i.i.d. channel case Σ h = It).
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3.1. Asymptotic Distortion Bounds
Under high resolution assumption (large N), the asymptotic distor-
tion of the generalized finite-rate quantization system can be lower
bounded by the following form

DLow = 2
− 2B

kq

„Z
Q

`
Iw

opt(v) · p`v´´ kq
2+kq dv

« 2+kq
kq

, (2)

where Iw
opt

`
v
´

is the average optimal inertial profile defined as

Iw
opt

`
v
´

=

Z
Z

Iopt

`
v ; α

´ · p`α˛̨v´ d α. (3)

The normalized inertial profile of an optimal quantizer is defined as
the minimum inertia of all admissible Voronoi regions. The inertial
profile of any Voronoi shape, including the optimal inertial profile,
Iopt

`
v ; α

´
, can be tightly lower bounded by that of an M-shaped

hyper-ellipsoid

Iopt

`
v ; α

´
� kq

kq + 2
·
„˛̨

Wα(v)
˛̨

κ2
kq

« 1
kq

, (4)

where | · | represents determinant and κn is the volume of an n-
dimensional unit sphere. The above results are derived assuming the
quantization parameter v is unconstrained. But this is not generally
the case. For instance the beamforming vector has a norm constraint
‖v‖ = 1, and a phase constraint �〈v, bv〉 = 0. We denote the
constrained space as g(v) = 0. For the constrained source, the
asymptotic distortion bounds presented above are still valid with the
following modification. First, the degrees of freedom in v reduce
from kq to k′

q = kq − kc, with kc equal to the number of constraints.
Here kc = 2, which leads to k′

q = 2t−2. Next, the sensitivity matrix
is replaced by its constrained version Wc, α(v) given by

Wc, α

`
v
´

= VT
2 · Wα

`
v
´ · V2 , (5)

where V2 ∈ R
kq×k′

q is an orthonormal matrix with its columns con-
stituting an orthonormal basis for the null space N ` ∂

∂ v
g(v)

´
. Sub-

sequently Iopt

`
v ; α

´
now becomes a lower bound on the constrained

optimal inertial profile Ic,opt

`
v ; α

´
. Lastly, the multi-dimensional

integrations used in evaluating the average distortions are over the
constrained space g(v) = 0.

4. AVERAGE SEP LOSS ANALYSIS
In this section we derive DQ

`
v, bv ; α

´
, the non-mean-squared dis-

tortion function for the average SEP loss of rectangular M -QAM
constellation, design the optimum codebook matched to the distor-
tion function and derive the expressions for the loss in average SEP
under spatially i.i.d and spatially correlated channel conditions. In
the last subsection, we consider the high-SNR regime for insight into
the effect of quantization on a correlated channel .

4.1. Distortion Function - Average SER of M -QAM
In this subsection, we derive the appropriate non-mean-squared dis-
tortion function, DQ

`
v, bv ; α

´
, for a rectangular M -QAM constel-

lation. The transmitting symbol sm = sx+jsy , m = 0, 1, . . . , M−
1, x = 0, 1, . . . , M1 − 1, y = 0, 1, . . . , M2 − 1, where the M -
QAM constellation is of size M = M1M2. Here sx = axd, and
sy = ayd, where ax = −(M1 − 1) + 2x (i.e., axd is the in-phase
M1-PAM constellation symbol) and ay = −(M2 − 1) + 2y (i.e.,
ayd is the quadrature-phase M2-PAM constellation symbol). Aver-
age SEP without channel quantization for the in-phase M1-PAM is
given by [5]

PP M1
= 2

„
1 − 1

M1

«
· E
h
Q
“√

λ · α
”i

, (6)

where Q(x) = 1√
2π

∞R
x

exp(−u2/2)du and λ = ρ · φ, where φ =

6
M2

1+M2
2−2

. The average SEP for Quadrature M2-PAM is given

by (6), with M1 replaced by M2. The average SEP of M -QAM
with perfect feedback is given by PP−QAM = PP M1

+ PP M2
−

PP M1
· PP M2

. The average SEP with finite rate channel quantiza-
tion for M1-PAM is given by,

PQM1
= 2

„
1 − 1

M1

«
· E
h
Q
“p

λ · α · |〈v, bv〉|2”i . (7)

The average SEP for M2-PAM with channel quantization is given
by (7), with M1 replaced by M2. The average SEP of M -QAM with
finite rate quantization is given by PQ−QAM = PQM1

+ PQM2
−

PQM1
· PQM2

. The finite-rate quantization effect is the loss in av-
erage SEP, which is given by PLoss = PP−QAM − PQ−QAM . The
instantaneous SEP loss due to finite-rate CSI quantization is taken to
be the system distortion function DQ(v, bv ; α) given by (8) (shown
on the next page). Under high resolution assumptions, the quantized
beamforming vector bv is close to v, and the inner product |〈v, bv〉|
is close to one. In this case, the distortion function DQ

`
v, bv ; α

´
can be approximated by taking the first order Taylor series expan-
sion w.r.t. the random variable |〈v, bv〉|2. After some simplification
the distortion function can be written as (9) (shown on next page).
In this paper, we only consider the case with same distance d in both
in-phase and quadrature-phase. The analysis can be easily extended
to the case where the distances are not the same.

4.2. Optimum Codebook Design for Rectangular M -QAM
The codebook has to be designed to minimize the SEP loss. The
cost function for SEP loss given in (9) is different compared to the
ergodic capacity loss employed in previous work. However, the gen-
eral framework can be used with appropriate modification. The crite-
ria in this case is to maximize the following mean squared weighted
inner product (MSwIP)

max
Q(.)

E|〈α̃v, Q(h)〉|2, Q(h) = v̂, (15)

where α̃2 = exp
`−λ α

2

´ · qλ α
8π

·
h
A + 2C · Q

“√
λα
”i

. With

this new design criterion, the two conditions of Lloyd algorithm,
the nearest neighbor-hood condition and centroid condition, are iter-
ated until convergence. More details on the algorithm design can be
found in [1]. It should be noted that similar to the case of capacity
loss, because of the form of the SEP loss function, the codebook de-
signed for spatially i.i.d capacity loss function is also optimum for
the i.i.d case of SEP distortion analysis. A drawback with the new
codebook is that the codebook has to be designed for each operating
SNR, constellation and the correlation matrix. In the next subsec-
tions we quantify the loss due to quantization under i.i.d and corre-
lated scenarios, under the assumption that the appropriate optimum
codebook is used.

4.3. Distortion Analysis for spatially i.i.d Channels
We make use of the asymptotic distortion bounds presented in sec-
tion 3.1 and show the steps required in arriving at the loss in average
SEP for the M -QAM constellation. The relevant distortion function,
(9), was derived in the previous section. Due to space limitations, we
only outline the steps and present the final results.

The lower bound on asymptotic distortion given by (2), requires
the computation of constrained sensitivity matrix (5), lower bound
on constrained normalized inertial profile of an optimal quantizer (4)
and the weighted constrained inertial profile (3). After some simpli-
fication the constrained sensitivity matrix for the distortion function
of SEP loss can be shown to be given by (10). For spatially i.i.d
and correlated channels, the optimal inertial profile is obtained by
substituting (10), the constrained sensitivity matrix, into the hyper-
ellipsoidal approximation given by (4). The optimal constrained
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DQ(v, bv ; α)
�
=
h
Q
“√

λ · α
”
− Q

“p
λ · α · |〈v, bv〉|2”i · hA + C ·

“
Q
“√

λ · α
”

+ Q
“p

λ · α · |〈v, bv〉|2””i , (8)

A = 2

„
2 − 1

M1
− 1

M2

«
, C = −4

„
1 − 1

M1
− 1

M2
+

1

M1M2

«
.

DQ(v, bv ; α) ≈ exp

„
−λ α

2

«
·
r

λ α

8π
·
h
A + 2C · Q

“√
λα
”i

· `1 − |〈v, bv〉|2´ (9)

Wc, α

`
v
´

= exp

„
−λ α

2

«
·
r

λ α

8π
·
h
A + 2C · Q

“√
λα
”i

· I2t−2 (10)

Ic, opt (v ; α) = (t − 1) · exp

„
λ α

2

«
· γ− 1

t−1
t ·

r
λ α

t2 · 8π
·
h
A + 2C · Q

“√
λα
”i

(11)

Iw
opt

`
v
´

= DA · A · Γ
„

t +
1

2

«
+ DA · 2C ·

Z ∞

0

Q (
√

μy) · exp (−y) · yt− 1
2 dy, (12)

Z ∞

0

Q (
√

μy) · exp (−y) · yt− 1
2 dy =

Γ
`
t + 1

2

´
π

π/2Z
θ=0

„
sin2 θ

κ + sin2 θ

«t+ 1
2

dθ, (13)

π/2Z
θ=0

„
sin2 θ

κ + sin2 θ

«t+ 1
2

dθ =

√
κπ · Γ (t + 1)

2 (1 + κ)t+1 Γ
`
t + 3

2

´ 2F1

„
1, t + 1; t +

3

2
;

1

1 + κ

«
. (14)

inertial profile is given by (11). For spatially i.i.d channel, h ∼
NC(0, It), the random variable α has a pdf

pα(x) = pα|v (x) =
exp(−x) · xt−1

(t − 1)!
, x ≥ 0 . (16)

Using (16) and (11) in (3), Ic,opt

`
v ; α

´
, the weighted constrained

inertial profile coefficient can be obtained. After some simplification
an intermediate step in the derivation is given by (12), where

DA =

√
λ(t − 1) · γ− 1

t−1
t√

8πt!
`

λ
2

+ 1
´(t+ 1

2 )
, μ =

2λ

λ + 2
,

and Γ(n) =
∞R
0

e−uun−1du is the standard Gamma function. We use

Q(x) = 1
π

π/2R
θ=0

exp
“
− x2

2 sin2 θ

”
dθ, x ≥ 0, an alternative definition

of Q function [5] to simplify the second term with integral in (12)
and arrive at (13), where κ = μ/2. We make use of [5, Eqn. (5.17)]
to arrive at a closed form expression shown in (14) for the finite inte-
gral in (13), where 2F1(·, ·; ·; ·) is the hypergeometric function. By
substituting the weighted constrained inertial profile coefficient (12)
and p(v) = 1/γt, where γt is the volume of t-dimensional sphere,
into the distortion integral (2), the average SEP loss of an i.i.d. MISO
system can be shown to be given by (17) (shown on the next page).

4.4. Distortion Analysis for Spatially Correlated Channels
All the steps until the derivation of constrained normalized inertial
profile (11) are same for both spatially i.i.d and correlated channels.
For correlated MISO fading channels h ∼ NC`0, Σh

´
with channel

correlation matrix Σh having distinct eigen-values 2, i.e. λh,1 >
· · · > λh, t > 0. The marginal probability density functions of v and
conditional distribution of α|v can be shown to have the following
form [6]

pv (x) = γ−1
t · |Σh|−1 ·

“
xHΣ−1

h x
”−t

, (20)

pα|v (x) =
xt−1 · `vHΣ−1

h v
´t · exp

`−x · vHΣ−1
h v

´
(t − 1)!

.(21)

2In this paper, we assume that the channel covariance matrix Σ h has
distinct positive eigen-values. The result can be extended to any covariance
matrix that is positive definite. If the channel covariance matrix is singular,
the quantization should be carried out in a space with reduced dimension.

By substituting the conditional pdf pα|v (x) given by (21) and the
constrained normalized inertial profile (11) into equation (3), the av-
erage inertial profile can be obtained. Using (20) and the averaged
inertial profile in (2), the average SEP loss of an spatially correlated
MISO system is given by (18) (shown on the next page). To simplify
the derivation, we use the alternative representation of Q function for
this case also.

4.5. Distortion Analysis in High-SNR Regime
The analytical expressions for SEP loss of M -ary rectangular QAM
constellation for transmit beamforming of a MISO system are given
by (17) and by (18) for spatially i.i.d and correlated cases. The equa-
tions are lengthy and complex providing limited insight into the sys-
tem behavior. In high-SNR regime it is easy to see that κ ≈ 1.
For spatially i.i.d. MISO fading channels, the average distortion,
DQ-H-SNR-iid, under high-SNR assumption can be simplified into (19)
shown in the next page. From (19) it is clear that the diversity order
is ‘t’ and increasing the number of feedback bits has an exponen-
tial impact on the system distortion function, notice that this fact is
true even without the high-SNR assumption. The rest of the terms
in (19) depend on the number of transmitting antennas and the size of
the rectangular QAM constellation. For spatially correlated channel,
the functions β1

`
t, λ,Σh

´
and β2

`
t, λ,Σh

´
are difficult to evalu-

ate. However, we can evaluate them in closed form under high SNR
assumption

β1−H−SNR

`
t, λ,Σh

´
= λ−(t+ 1

2 ) · 2(t+ 1
2 ) · γ

t
t−1
t , (22)

β2−H−SNR

`
t, λ,Σh

´
= 2 · λ−(t+1) · γ

t
t−1
t . (23)

Making use of the above equations, after some manipulations we
arrive at an interesting simple relation between the loss associated
with spatially correlated and i.i.d cases

DQ-H-SNR-iid = |Σh| · DQ-H-SNR-cor. (24)

The above equation tells us that in the correlated case the loss is a
simple scaling of the loss associated with i.i.d case, the scaling fac-
tor being the determinant of the correlation matrix. Note that this
analysis is quite general in the sense that we can have an arbitrary
correlation structure across the antennas. The quantization parame-
ter B, and number of antennas, t, both appear in the exponent for
the correlated scenario under general and high-SNR regimes. In the
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DQ-iid =

"√
λ · (t − 1) · A · 2t−1 · Γ `t + 1

2

´
√

π · t! · (λ + 2)(t+ 1
2 )

+
λ · (t − 1) · C · Γ `t + 1

2

´
4π · (1 + λ)t+1 · Γ `t + 3

2

´ · 2F1

„
1, t + 1; t +

3

2
;

1

1 + κ

«#
· 2− B

t−1 . (17)

DQ-cor =

"
β1

`
t, λ,Σh

´ · TD + β2

`
t, λ,Σh

´ ·
r

λ

2
· TE

#
γ−1

t · |Σh|−1 · 2− B
t−1 , (18)

β1

`
t, λ,Σh

´
=

0
@Z

v: g(v)=0

“λ

2
+ vHΣ−1

h v
” (1−t)(t+ 1

2 )
t

dv

1
A

t
t−1

,

β2

`
t, λ,Σh

´
=

 Z
v: g(v)=0

“
λ + vHΣ−1

h v
” (1−t)(t+1)

t · 2F1

„
1, t + 1; t +

3

2
;

1

1 + ν

« t−1
t

dv

! t
t−1

,

TD =

√
λ(t − 1) · γ− 1

t−1
t · A · Γ `t + 1

2

´
√

8π · t! , TE =

√
λ(t − 1) · γ− 1

t−1
t · C · Γ (t + 1) · Γ `t + 1

2

´
Γ
`
t + 3

2

´√
8π t!

, ν =
λ`

2vHΣ−1
h v + λ

´ .
DQ-H-SNR-iid =

"
2t−1 · (t − 1) · A · Γ `t + 1

2

´
√

π · t! · φt
+

(t − 1) · C · Γ `t + 1
2

´
4π · Γ `t + 3

2

´ · φt
· 2F1

„
1, t + 1; t +

3

2
;
1

2

«#
· 2− B

t−1 · ρ−t . (19)

correlated scenario, the additional loss in average SEP due to quanti-
zation is independent of the constellation size. The diversity order is
also not effected as a result of quantization. Further, it can be shown
that the system performance in terms of SEP is more sensitive to the
finite-rate channel quantization in the high-SNR regime.

5. NUMERICAL AND SIMULATION RESULTS

A sample simulation is shown in Fig. 1. It plots the average SEP loss
due to the finite rate quantization of the CSI versus feedback rate B,
for a 3×1 MISO system over spatially i.i.d. and correlated Rayleigh
fading channels with different rectangular M -QAM constellations at
system SNRs ρ = 10dB, and 24dB, respectively. Codebooks are de-
signed by using optimal MSwIP criterion, suitable for average SEP
loss analysis, as explained in section 4.2. The spatially correlated
channel is simulated by the correlation model in [7]: A linear an-
tenna array with antenna spacing of half wavelength, angle of arrival
φ = 0◦ and uniform angular-spread in [−30◦, 30◦].

Fig. 1 shows the analytical and simulation plots for both spatially
i.i.d and correlated channels. The analytical expression for i.i.d is
closed form, and for correlated channel the expression is closed form
under high SNR assumption. The simulation and analytical results
match well as the number of feedback bits increase. The distortion
function we have is a first order approximation and this approxima-
tion becomes accurate as the number of feedback bits increase. Also
note that the analytical expression for distortion is not optimum but
a lower bound on the optimum, which becomes more tight as the
number of feedback bits increases.

6. CONCLUSION
In this paper, we studied the average SEP loss analysis of finite rate
feedback MISO system with rectangular M -QAM utilizing a source
coding perspective . We derived the distortion function as a 1st order
approximation of the instant SEP loss and designed a new optimum
codebook. This codebook depends on SNR point, constellation, and
the correlation matrix. For Rayleigh fading channels, assuming per-
fect channel estimation, no-delay and high resolution, for spatially
i.i.d and correlated channels we provided analytical expressions for
loss in average SEP due to finite-rate channel quantization. We then
considered the high-SNR regime and showed that the loss associated
with correlated case is the loss associated with the i.i.d case scaled by
the determinant of the correlation matrix. The simulation results are
in agreement with the analytical expressions. The present analysis
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Fig. 1. Average SEP loss of M -QAM rectangular constellation.

framework can be extended to other two dimensional linear modula-
tion schemes and also to study the effects of mismatched codebook.
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