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ABSTRACT

This paper addresses the design of the linear precoders and
decoders of the complex Gaussian broadcast channel in which
both the base station and the remote station are equipped with
arrays of multiple antennas. An imperfect channel knowl-
edge is assumed at the base station and the Minimization of
the sum of the Mean Square Errors (MMSE) of the system’s
substreams is chosen as optimization criterion. A stochastic
approach is taken to make the design robust against the chan-
nel estimation errors. The solution is based on an iterative
algorithm whose convergence is guaranteed. Simulations re-
sults emphasize the bene t of the proposed design.

Index Terms— Broadcast channel, MIMO, Least mean
square methods, Robustness.

1. INTRODUCTION
Since the seminal works of Alamouti and Tarokh, Multiple
Input Multiple Output (MIMO) systems have attracted an in-
creasing interest as they allow a dramatic capacity improve-
ment in comparison with single antenna systems. Among oth-
ers, the broadcast channel has recently captured a lot of atten-
tion. Although, the well-known Costa’s dirty paper coding
scheme has been proven to achieve the channel capacity [1],
it faces serious implementation issues due to its high com-
plexity. Linear schemes are therefore seen as a suboptimal
alternative for practical systems.
In this paper, we address the design of the linear pre-

coders and decoders of the MIMO complex Gaussian broad-
cast channel with the minimization of the sum of the mean
square errors of the system’ substreams as objective. With
the assumption of a perfect Channel State Information (CSI)
available at the base station, such MMSE criterion has al-
ready been optimally solved in [2] making use of the uplink-
downlink duality. Furthermore, a suboptimal iterative design
has been proposed in [3]. Although suboptimal, this solution
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iterates between pre/decoding closed-formed designs which
makes it appealing for an implementation point of view.
However, a perfect CSI available at the transmit side is

impossible to obtain in real systems and one has to account
for estimation errors. Two strategies are commonly used to
deal with them: worst case and stochastic. The rst strat-
egy aims at designing the beamformers such that the speci-
cations will be ful lled provided the estimation errors are
lower than a given level [4]. Although interesting for QoS-
constrained (Quality of Service) systems, this approach often
leads to too much conservative designs. The second strategy
exploits the knowledge of some statistics of the channels and
the estimation errors to deal with the channel uncertainties.
Such a stochastic approach has been used in [5] and [6] for
the design of multicarrier single-user precoders. The single
receive antenna MMSE stochastic design has been proposed
in [7]. In this work, we take this second strategy to design
the MMSE precoders and decoders robust to the channel es-
timation errors. As these precoders rely on the decoders and
vice versa, we use an iterative algorithm whose convergence
is guaranteed. Simulations emphasize the bene t of the pro-
posed robust scheme in comparison with a naive design built
by considering the estimated channels as the actual ones.
The following notations will be used. Matrices and vec-

tors are represented with bold capital letters and bold lower-
case letters, respectively. A∗, AT and A† are the conjugate,
transpose and Hermitian of matrix A. Moreover, its trace is
written as tr {A} whereas [A]ij denotes the element in row i
of column j. Finally, Ir is the identity matrix of size r and
E{.} is the mathematical expectation operator.

2. SYSTEMMODEL
The system model we consider is depicted in gure 1 for an
exemplary two-user system. A base station equipped with
M transmit antennas broadcasts to a set ofK remote stations
equipped with arrays ofNk receive antennas (in which k is the
user index). Linear processing is assumed at both the trans-
mit and receive sides. Furthermore, we assume that several
symbols can be simultaneously transmitted to the same user.
Hence, e.g., the lth symbol of user k (l ∈ [1, . . . , Lk], with
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11ŝ
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Fig. 1. Exemplary system: K=2;M=4; N1,2=3, 2; L1,2=2, 1.

Lk≤Nk and
∑

u Lu≤M ) is estimated as follows:

ŝkl =
1
η
gkl (Hkfkl skl+Hk

K∑
u=1

Lu∑
m=1

um �=kl

fumsum + νk) (1)

in which νk is a zero-mean complex white Gaussian noise
with correlation matrix Rν

k . The (M×1) precoder (transmit
beamformer) associated with symbol skl is denoted as fkl,
whereas gkl is the (1×Nk) corresponding decoder (receive
beamformer). Symbols are assumed to be of unitary variance,
non correlated between each other and non correlated with
the noise. Moreover,Hk is the (Nk×M) complex Gaussian
channel matrix of user k. Finally, scalar η is a scaling factor
common to all substreams. Equation (1) emphasizes that the
symbol estimates suffer from the additive noise, the interfer-
ence of the symbols of the other users but also from the other
symbols of the same user (self-interference). Furthermore,
the transmit power at the base station is globally constrained:

K∑
k=1

Lk∑
l=1

tr
{
fklf

†
kl

}
≤ P. (2)

Assuming a perfect (section 3) or imperfect (section 4)
channel knowledge, our goal is to design the precoders and
decoders so as to minimize the sum (or equivalently, the arith-
metic mean) of the MSEs of the

∑K
k=1 Lk substreams. The

optimization is assumed to be conducted at the base station
which sends (through control channels) the decoders to the
remote stations whose complexity can then be reduced.

3. PERFECT CSI-BASED MMSE DESIGN
The perfect CSI-based iterative MMSE design has been de-
rived in [8] for the MISO case and for the MIMO case in [3].
Here, we brie y recall the rst method as it will be the basis
of the robust design we propose in the next section. Assuming
a perfect CSI available, the channels are treated as determin-
istic and the optimization problem is stated as:

min
fum, gum, η

∀u,m

K∑
k=1

Lk∑
l=1

MSEkl s.t. (2), (3)

in whichMSEkl is the mean square error of substream kl:

MSEkl = Eskl,νk

{
‖ŝkl − skl‖2

}
, (4)

where the expectation is to be taken over the symbols and the
additional noise. Thanks to the assumptions of section 2, (4)
can be rewritten as:

MSEkl = 1 +
1
η2
gklHk

⎛
⎝ K∑

u=1

Lj∑
m=1

fumf
†
um

⎞
⎠H†

kg
†
kl

+
1
η2
gklR

ν
kg
†
kl −

1
η

(
gklHkfkl + f

†
klH

†
kg
†
kl

)
. (5)

Using a classical Lagrangian-based optimization, the op-
timal pre/decoders are easily derived and given by [3][8]:��
�

fopt
kl = η [A + αIM ]−1 H†

kg
†
kl

gopt
kl = ηf†klH

†
k

�
Hk

��K
u=1

�Lu
m=1 fumf†um

�
H†

k + Rν
k

�−1

(6)
with �			�

			�

A =
�K

u=1 H
†
u

��Lu
m=1 g

†
umgum

�
Hu

α = 1
P

��K
u=1

�Lu
m=1 gumRν

ug
†
um

�

η =



P
tr{[A+αIM ]−1A[A+αIM ]−1}

(7)

The algorithm consists in iterating between the transmit and
receive designs until convergence. As each step of the algo-
rithm decreases the lower bounded objective function (

∑
k

∑
l

MSEkl≥0), the convergence is guaranteed. However, as lo-
cal optima can be reached, this iterative strategy is not opti-
mal. Nevertheless, as it relies on closed-formed designs and
as the convergence speed is high, this scheme can be interest-
ing for practical implementations.

4. STOCHASTIC ROBUST DESIGN
Although the above perfect CSI assumption is theoretically
appealing, quantization errors, imperfect estimation at the re-
ceive side, feedback delay,... make it unreachable for prac-
tical systems. Of course, one could treat the channel esti-
mates as perfect and use the pre/decoders (6). However, this
approach is not optimal if one has access to some statistics
of the channels. In this work, we assume that the means (μ)
and covariances (C) of the channels and the estimation noises
are perfectly available at the base station. This assumption
makes sense since these parameters vary slowly and are there-
fore easier to estimate than the instantaneous channel. Hence,
the MMSE design turns into the minimization of the expected
(over the channels) mean square error of the system1:

min
fum, gum, η

∀u,m

K∑
k=1

Lk∑
l=1

EMSEkl s.t. (2), (8)

where EMSEkl is the conditional expectation ofMSEkl:

EMSEkl = EHk|Ĥk,μHk
,CHk

{MSEkl} (9)

The estimated channel is assumed to be the addition of the
actual channel and an estimation noise:

Ĥk =Hk +W k. (10)
1Note that we assume the statistics of the additive white noise perfectly

known as it is a slow varying parameter. However, the extension to an imper-
fect knowledge is easy.
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We row-wise vectorize these matrices into (MNk×1)vectors:

ĥk = hk +wk. (11)

The actual channel as well as the estimation noise are as-
sumed to be jointly complex Gaussian: hk ∼ NC(μhk

,Chk
)

and wk ∼ NC(μwk
,Cwk

) [9]. Furthermore, we assume the
independence between hk and wk. Hence, ĥk is complex
Gaussian distributed: ĥk ∼ NC(μhk

+μwk
,Chk

+Cwk
).

Furthermore, from [9], the conditional channel (hk|ĥk,μhk
,

Chk
,μwk

,Cwk
), is also Gaussian distributed with mean and

covariance written like2:
{
μhk|ĥk

= μhk
+Chkĥk

C−1

ĥkĥk

(
ĥk − μĥk

)
Chk|ĥk

= Chkhk
−Chkĥk

C−1

ĥkĥk
Cĥkhk

(12)

As in [5], and thanks to the matrix inversion lemma, we rewrite
(12) in the following smarter way (with Cx=Cxx):⎧⎨
⎩ μhk|ĥk

= μhk
+Chk

(Chk
+Cwk

)−1
(
ĥk − μĥk

)
Chk|ĥk

=
(
C−1

hk
+C−1

wk

)−1

(13)
In addition, if as in [5], the estimation noise is zero-mean and
small (Cwk

�Chk
), (13) can be approximated as:

{
μhk|ĥk

� ĥk
Chk|ĥk

� Cwk

(14)

Given the above statistics, let’s compute EMSEkl, the
expected mean square error of the lth substream of user k:

EMSEkl = 1 +
1
η2
gklR

ν
kg
†
kl

−1
η
Ehk|ĥk

{
gklHkfkl + f

†
klH

†
kg
†
kl

}
(15)

+
1
η2
Ehk|ĥk

⎧⎨
⎩gklHk

⎛
⎝ K∑

u=1

Lj∑
m=1

fumf
†
um

⎞
⎠H†

kg
†
kl

⎫⎬
⎭

The rst expectation is obvious to compute and is written as:

Ehk|ĥk

{
gklHkfkl + f

†
klH

†
kg
†
kl

}
= gklμHk|ĥk

fkl

+f †klμ
†
Hk|ĥk

g†kl, (16)

where μHk|ĥk
is the non vectorized version of (12). Let’s

now focus on the second expectation in (15) and start by turn-

2To lighten the notations, the next conditioned quantities will be written
like “.|hk” but note that their also implicitly conditioned on the means and
covariances of the channels and the estimation noises.

ing the matrix products into sums:

akl = Ehk|ĥk

{
gklHk

(
K∑
u=1

Lu∑
m=1

fumf
†
um

)
H†

kg
†
kl

}

= gklEhk|ĥk

{
Hk

(
K∑
u=1

Lu∑
m=1

fumf
†
um

)
H†

k

}
g†kl

=
Nk∑
i=1

Nk∑
j=1

[gkl]i

(
K∑
u=1

Lu∑
m=1

[Bkum]ij

)
[g∗kl]j , (17)

with Bkum=Ehk|ĥk

{
Hkfumf

†
umH

†
k

}
. We now develop

the ijth element. Rewriting it as sums and using classical
stochastic algebra, the following identities can be obtained:

[Bkum]ij = Ehk|ĥk

��
�

M�
q=1

M�
n=1

[Hk]iq

�
fumf†um

�
qn

�
H†

k

�
nj

��
	

=



p(hk|ĥk)

M�
q=1

M�
n=1

[Hk]iq

�
fumf†um

�
qn

�
H†

k

�
nj
dhk

=
M�
q=1

M�
n=1

�
fumf†um

�
qn



p
�
[Hk]iq; [Hk]jn

���ĥk


[Hk]iq [H∗
k]jndhk

=

M�
q=1

M�
n=1

�
fumf†um

�
qn

�
μ[Hk]iq|ĥk

.μ∗
[Hk]jn|ĥk

+ C[Hk]iq [Hk]jn|ĥk

�

=

�
μHk|ĥk

fumf†umμ†
Hk|ĥk

�
ij

+ tr

�
fumf†umCT

[Hk]i:[Hk]j:|ĥk

�
(18)

in which C [Hk]i:[Hk]j:|ĥk
is the conditional covariance ma-

trix between the ith and jth lines ofHk. Hence, (17) can be
rewritten as:

akl = gkl

(
Dk + μHk|ĥk

(
K∑
u=1

Lu∑
m=1

fumf
†
um

)
μ†
Hk|ĥk

)
g†kl

(19)
whereDk is a (Nk×Nk) matrix with ijth element given by:

[Dk]ij = tr

{(
K∑
u=1

Lu∑
m=1

fumf
†
um

)
CT

[Hk]i:[Hk]j:|ĥk

}
(20)

Therefore, (15) can be eventually rewritten as follows:

EMSEkl = 1 +
1
η2
gklR

ν
kg
†
kl

−1
η

(
gklμHk|ĥk

fkl + f
†
klμ

†
Hk|ĥk

g†kl
)

(21)

+
1
η2
gkl

(
μHk|ĥk

(
K∑
u=1

Lu∑
m=1

fumf
†
um

)
μ†
Hk|ĥk

+Dk

)
g†kl

Note the similarities between (21) and (5). The robust case
is obtained by replacing the actual channel by its conditional
mean and by adding an extra term (Dk) which takes into ac-
count the channel correlations.
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As for the perfect CSI case, problem (8) is solved with
the help of a Lagrangian optimization. This gives rise to the
hereafter optimal pre/decoders:
����
���

fopt
kl = η [A + B + αIM ]−1 μ†

Hk|ĥk
g†kl

gopt
kl = ηf†klμ

†
Hk|ĥk

�
μHk|ĥk

��K
u=1

�Lu
m=1 fumf†um

�
μ†
Hk|ĥk

+Rν
k + real{Dk}

	−1

(22)
with��������

�������

A =
�K

u=1 μ
†
Hu|ĥu

��Lu
m=1 g

†
umgum

�
μHu|ĥu

B =
�K

u=1

�Lu
m=1 (gum ⊗ IM )Qu

�
g†um ⊗ IM

�

α = 1
P

��K
u=1

�Lu
m=1 gumRν

ug
†
um

�

η =
�

P
tr{[A+B+αIM ]−1A[A+B+αIM ]−1}

(23)

and whereQu is a (MNu×MNu) block matrix with block ij
given byCT

[Hu]i:[Hu]j:|ĥu
+C∗

[Hu]i:[Hu]j:|ĥu
(i, j = 1...Nu)

whereas ⊗ is the Kronecker product. As the optimal pre-
coders rely on the optimal decoders and vice versa, we re-
sort to a two-step loop iterative algorithm. Each step op-
timizes one set of variables (i.e. the precoders or the de-
coders) while considering the other variables as xed values.
As each step of the algorithm monotonously decreases the
lower bounded objective function (

∑
k

∑
lEMSEkl≥0), the

algorithm is guaranteed to converge. Nevertheless, note that
although each step of the algorithm is convex, the stationary
point reached is not assured to be globally optimal. Finally,
note that for our simulations, we have initialized the algorithm
with random decoders.

5. SIMULATION RESULTS
Figure 2 illustrates a Monte-Carlo simulation for a two-user
system in which the base station is equipped with four anten-
nas and sends two streams to each remote station (both mak-
ing use of two receive antennas). The two users undergo the
same additive noise variance (σ2

ν) and zero-mean unitary non
correlated channels: hk ∼ NC(0, IMNk

) ∀k. The channel
estimation noise statistics are: wk ∼ NC(0, σ2

wINkM ) ∀k,
with two simulated levels of variance: σ2

w = 0.03, 0.07. In
addition to the perfect CSI curve, three curves are plotted for
each level: the “naive” curve uses precoders (6) considering
the estimated channels as the actual ones, the “robust app”
and “robust” curves use the robust designs (22) with the ap-
proximated (14) and actual (13) conditional means and co-
variances, respectively. The gure clearly shows the gain
obtained with our robust design in comparison with a naive
design, especially at high P/σ2

ν values3. As expected, the ap-
proximated robust design tends to the true robust design as the
estimation noise becomes smaller. Finally, note that the sum-
MSE of the naive design increases at high P/σ2

ν values. This
comes from that, as the noise variance decreases, the diagonal
loading term bringing robustness decreases.

3Notice that we have considered the same estimation error level for the
whole range of P/σ2

ν values. Nevertheless, in practical systems, the estima-
tion noise variance should decrease as P/σ2

ν becomes higher.
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Fig. 2. Exemplary simulation results.

6. CONCLUSIONS
In this paper, we have proposed a robust MMSE design for the
linear pre/decoders of the MIMO complex Gaussian broad-
cast channel. The scheme makes use of the knowledge of the
rst and second order statistics of the channels and their esti-
mation noise to make the design more robust against the es-
timation errors. The proposed algorithm iterates between the
precoder and decoder designs and is guaranteed to converge.
Simulations illustrate the bene t of this enhanced approach in
comparison with the so-called naive method which consists in
considering the estimated channels as the actual ones.
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