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ABSTRACT

This paper presents a low-complexity iterative algorithm for
long-term transmit beamforming in multicast channels. Since
it relies only on antenna correlations at the base station, the
algorithm requires only infrequent feedback from the users.
Multiantenna receivers are not required, but they are trans-
parently accommodated. Simulation results within the con-
text of the UMTS long-term evolution system indicate that,
with half-wavelength antenna spacings and a typical power
azimuth spectrum, the performance is close to optimal. The
speci c gains (in average SINR) then depend on the number
of transmit antennas and the number of active users.

Index Terms— Array signal processing, adaptive arrays,
beam steering, multicast channels, mobile communication

1. INTRODUCTION

In a multicast channel, a transmitter communicates a com-
mon signal (video, audio, data, etc) to multiple receivers. In
the wireless arena in particular, multicasting is shaping up as a
central feature of nascent cellular systems such as UMTS LTE
(long-term evolution) [1] and 1xEV-DORevision C. Since an-
other ubiquitous feature of emerging wireless systems is the
availability of antenna arrays at the base stations, it is of ob-
vious interest to nd ways to utilize those arrays for the mul-
ticast transmissions [2].
This paper focuses on transmit beamforming (i.e., unit-

rank transmit signal covariance), which accommodates but
does not require multiantenna receivers and has low complex-
ity requirements.
In contrast with individual unicast channels, where instan-

taneous CSI (channel state information) fast-feedback mech-
anisms exist, multicast channels are mostly one-directional.
Usually, only long-term CSI reports can be conveyed back
to the base station. Accordingly, our focus is on long-term
transmit beamforming that operates on the basis of correlation
information only. (Excellent treatments of the case where in-
stantaneous CSI is assumed available at the base can be found
in [3, 4].)

2. PROBLEM FORMULATION

Consider a base station, equipped with nT transmit antennas,
andK users, each featuring nR ≥ 1 receive antennas. Denote
by {H�}K

�=1 the nR × nT channel matrices between the base
station and each of the users. With a beamformed multicast
transmission, the signal vector received at the �th user is

y� = H�wx + n� (1)

where x is the scalar transmit signal, with powerE[|x|2] = P ,
and n� is the noise-plus-interference vector at the �th user,
with covariance Σ� = E[n�n

†
�]. In turn, w is a common

beamforming vector satisfying ‖w‖ = 1.
The base station has only knowledge of the nT × nT cor-

relation matrices

Θ� = E
[
H†

�Σ
−1
� H�

]
� = 1, . . . , K (2)

each of which is estimated by the corresponding receiver and
reported back to the base. Unlike {H�}K

�=1, which are subject
to fast fading, {Θ�}K

�=1 vary on a slow time scale and thus
need to be reported back only infrequently.1
Our goal is to optimize w on the basis of only {Θ�}K

�=1.
The optimization cannot therefore be driven by the instan-
taneous SINR (signal-to-interference-and-noise ratio) values,
but only by their long-term averages. For the �th user, such
average SINR is [5]

γ̄� = E

[∥∥∥Σ−1/2
� H�wx

∥∥∥2
]

(3)

= P E
[
w†H†

�Σ
−1
� H�w

]
(4)

= P w†Θ�w. (5)

Since, in order for a data rate to be sustainable in a multi-
cast channel, it has to be achievable by all active users, the

1In OFDM, the scheme of choice for most emerging wideband wireless
systems, eachΘ� is further common to all tones and hence single long-term
CSI reports by every user suf ce. In contrast, everyH� may vary from tone
to tone. Thus, a single long-term beamformer suf ces while many distinct
instantaneous beamformers could be required within the signal bandwidth.
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optimum long-term beamformer is

w� = arg max
w:‖w‖=1

min
�=1,...,K

P w†Θ�w. (6)

where, alas, the functionmin� P w†Θ�w is non-convex. Note
that w� is not simply the vector that maximizes the average
SINR for the user that, absent beamforming, would have the
lowest such average. This would ignore how such beamform-
ing vector impacts all other users. Not only is that solution
suboptimal, but it may lead to a loss rather than a gain.

3. SEMIDEFINITE RELAXATION

De ning Φ = Pww† as the unit-rank transmit covariance,
(6) can be reformulated as

Φ� = arg max
Φ:Tr{Φ}=P

Φ�0,rank{Φ}=1

min
�=1,...,K

Tr{ΦΘ�} (7)

where the maximization is taken over all unit-rank positive-
semide nite matrices with trace equal to P . In its form in (7),
the problem at hand is not only again seen to be non-convex
(in this case as a result of the the unit-rank constraint), but it
can further be shown to be NP-hard [4].2
An upper bound on min� Tr{ΦΘ�} can be obtained by

dropping the unit-rank constraint. Thus relaxed, (7) becomes
a convex semide nite problem that can be ef ciently solved
using modern interior point methods [6, Chapter 11]. Al-
though, in general, the relaxed problem yields a covariance
Φ that is not unit rank, it provides a useful performance up-
per bound and it can serve as starting point for certain search
methods developed in the optimization literature. (This is
precisely the approach followed in [4] for the case of instan-
taneous beamforming.) Rather than going down that path,
though, in the next section we present an iterative algorithm
motivated purely by engineering intuition. By its very nature,
this algorithm is well suited to dynamic implementations in
the time-varying conditions of mobile wireless systems.

4. GRADIENT-PROJECTION LONG-TERM
BEAMFORMING ALGORITHM

The idea behind the proposed algorithm is to, at every iter-
ation, slowly steer w towards the beamforming vector that
would maximize the average SINR of the worst user (in an av-
erage SINR sense) at that point. As this is done, the average
SINR of that worst user rises until a different user becomes
the worst, at which pointw is steered towards the beamform-
ing vector for this new worst user, and so on.
From (5), the gradient of the �th user’s average SINR with

respect tow can be found to be

∇w γ̄� = Θ�w (8)
2Although the proof of NP-hardness given in [4] is for a beamformer

driven by instantaneous SINR values, the argumentation carries over to (7).

Hence, denoting by w(t) the value at iteration t, our basic
update equation is

w(t+1) = w(t) + μΘmw(t) (9)
= (I + μΘm)w(t) (10)

where μ is a step-size parameter andm = arg min� Θ� is the
index of the worst user at iteration t. After each update, the
neww(t+1) is projected back onto the admissible set via

w(t+1) =
w(t+1)

‖w(t+1)‖ (11)

The algorithm starts by initializing w(0) and, once in steady
state, it can track the changes in average SINR’s caused by
user motion as long as μ is properly chosen. A complete
owchart of the algorithm is shown in Fig. 1.

Initialize    w(0)

Compute, for       =1,… ,K

γ =P w Θw

Identify weakest user      .
not out of coverage   .

m= arg min   γ
=1,…,K
γ  γ

min>

Update

w (t+1) =(I+μ Θm) w( t)

Project

w( t+1)=w (t+1) /||w( t+1) ||

{Θ }
=1

K

Fig. 1. Algorithm owchart.

Note that the selection of the worst user (indexm) consid-
ers only users with γ̄� > γmin. This re nement recognizes the
fact that users with a very low average SINR would represent
an excessive burden to the system and are hence deemed out
of coverage. The algorithm thus seeks to maximize the mini-
mum average SINR among those users not out of coverage.
The two parameters in the algorithm are (i) the step size

μ, determined primarily by the degree of user mobility, and
(ii) the threshold γmin, which should be adjusted on the basis
of the target coverage level and of the number of users,K.
Although the algorithm is not guaranteed to converge to

the optimal beamforming solution because of the non-convexity
of the problem, the results in the next section illustrate its ex-
cellent performance.
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Table 1. UMTS LTE Simulation Parameters
Layout Hexagonal grid
Frequency reuse Universal
Base station separation 1.732 Km
Sectors per cell 3
Sector antenna pattern See Fig. 2
P 43 dBm
Path-loss v. distance (r in Km) 128.1 + 37.6 log10 r dB
Shadowing Log-normal, 8-dB std
Shadowing correlation
between base stations 50%
Receiver noise gure 9 dB
Bandwidth 5MHz

5. APPLICATION TO UMTS LTE

5.1. Simulation Methodology

To exemplify the performance of the proposed algorithm, we
simulate its behavior within the context of the UMTS LTE
system. The relevant parameters of the simulation method-
ology speci ed in [1] for UMTS LTE evaluation are summa-
rized in Table 1. Average SINR statistics are computed over a
large number of drops, on each of which users are randomly
placed and connected to the base from which they receive the
strongest signal. OnceK users are connected to every sector,
the algorithm is initialized at w(0) = [1 0 . . . 0]T and run
until convergence. There is no user motion and thus the step-
size μ is consequential only in terms of the granularity noise
in the converged solution.
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Fig. 2. Sector antenna pattern (17-dB gain, 70◦ at 14 dB).

5.2. Antenna Correlations

The feature of the wireless channel that most critically im-
pacts a long-term beamformer is the correlation between the
transmit antennas at the base station [3]. Denoting by (·)p,q

the (p,q)th entry of a matrix, the correlation coef cient be-
tween transmit antennas j and k from the standpoint of the
ith receive antenna at the �th user is

E
[
(H�)i,j(H�)∗i,k

]
√

E [|(H�)i,j |2]E [|(H�)i,k|2]
=

∫ π

−π

A�(θ)ej2πdj,k sin(θ)dθ

(12)
where A�(θ) is the PAS (power azimuth spectrum) and dj,k is
the spacing between antennas j and k in wavelengths. Since it
relies thereupon, long-term beamforming requires strong an-
tenna correlations, which in turn requires small antenna spac-
ings and narrow angular spreads at the base station. In ac-
cordance with [7], for the simulations that follow we consider
half-wavelength antenna spacings and a Laplacian PAS

A�(θ) =
e−

√
2|θ−θ̄�|/σG(θ)∫ π

−π
e−

√
2|θ−θ̄�|/σG(θ)dθ

(13)

where G(θ) is the antenna pattern in Fig. 2 while θ̄� is the az-
imuth location of the �th user relative to the array normal and
σ is the angular spread, set to 8◦. (This is a realistic value for
elevated base stations in urban and sub-urban environments,
and a conservative one for rural environments [7].)
From (12), (13), and the user locations and shadowings,

the entries of {Θ�}K
�=1 are generated for every simulated drop.

In the actual system, the �th user would estimate Θ� by low-
pass ltering ‖Σ−1/2

� y�‖2 upon transmission of pilot signals
x with covariance E[xx†] = P

nT
I in lieu of wx in (1). In the

simulator, perfect estimation of {Θ�}K
�=1 is considered.

For nR > 1, receive antenna correlations affect {γ̄}k
�=1

but are immaterial to the algorithm.

5.3. Results

In Fig. 3, the cumulative distributions of average SINR over a
large number of drops are depicted in solid lines, parameter-
ized by K, for nT = 4 and nR = 1. These distributions give
the complement of the coverage level, i.e., they give the frac-
tion of system locations in which the average SINR in less
than a certain value. The target coverage for the algorithm
was set to 90% and thus γmin has been optimized, for every
value of K, to yield the highest average SINR at that level.
Also shown in Fig. 3, in dashed, is the distribution of average
SINR in the absence of beamforming (i.e., with nT = 1) for
arbitrary K. Notice that, for K = 1, the beamforming distri-
bution is a replica of the non-beamforming one only shifted
by 5.5 dB, which is the single-user beamforming gain with
nT = 4 in an 8◦-degree Laplacian PAS.
Focusing on the 90% coverage level, Fig. 4 presents the

gains in average SINR with nT = 2, nT = 4, and nT =
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Fig. 3. Cumulative distributions of average SINR for the K
active users. In dashed, no beamforming (nT = 1). In solid,
beamforming with nT = 4 forK = 1, 2, 3 and 5.

8, as function of K. Also shown, for each con guration, is
the upper bound obtained by solving the relaxed semide nite
problem in (7). We observe that:

(i) The algorithm performs close to the (in general un-
achievable) relaxation upper bound. This excellent per-
formance with an arbitrary initialization suggests that,
with the correlations of interest and with the exclusion
of the 5% worst locations, the problem is close to being
convex.

(ii) The gain in average SINR diminishes with K, as is to
be expected, but relatively slowly. (With an isotropic
user population, the gain is sure to vanish forK → ∞.)

(iii) With growing nT, the gain saturates as the beam nar-
rows and becomes comparable to the angular spread.

For nT in the range 4–8, which are values in line with
those in emerging systems, and for the 8◦ Laplacian PAS typi-
cal of the corresponding deployment scenarios, average SINR
gains in the range 3–7.5 dB are feasible for K < 10. (Note
that K is not the total number of users connected to a sec-
tor, but only the number of users per sector that are actively
tuned onto a speci c multicast program.) These gains, in turn,
would allow for sizeable increases in the multicast data rates.
An alternative embodiment of the algorithm, driven by

the ergodic mutual information E[I] rather than the average
SINR, can be implemented by simply replacing the gradient
in (8) by [8]

∇wE[I�] = E
[
e� H†

�Σ
−1/2
� H�

]
w (14)

where e� is the MMSE in the estimation of the transmit signal
x from the observation of y�. In this case, the feedback re-
quired from each user would be the expected quantity in (14).
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Fig. 4. Increase in average SINR achieved on 90% of the
locations with long-term beamforming (nT = 2, 4 and 8)
with respect to non-beamforming (nT = 1). Also shown are
the respective upper bounds obtained by solving (7).
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antenna capacity in the low-power regime,” IEEE Trans.
on Inform. Theory, vol. 49, pp. 2527–2544, Oct. 2003.

[6] S. Boyd and L. Vandenberghe, Convex Optimization,
Cambridge Univ. Press, 2004.

[7] 3rd Generation Partnership Project (3GPP), TR
25.996 V6.1.0, Spatial Channel Model for Multiple-Input
Multiple-Output (MIMO) Simulations, Sept. 2003.

[8] D. P. Palomar and S. Verdu, “Gradient of mutual infor-
mation in linear vector Gaussian channels,” IEEE Trans.
Inform. Theory, vol. 52, no. 1, pp. 141–154, Jan. 2006.

III ­ 420


