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ABSTRACT

We study in this paper the sum capacity achievability of or-
thogonal transmissions in vector Gaussian multiple access chan-
nels (MAC). Speci cally, we derive the suf cient and neces-
sary conditions, in terms of channel matrices and transmitter
power constraints, for orthogonal transmission to achieve the
sum capacity of a vector Gaussian MAC. The obtained con-
ditions provide a uni ed framework in explaining many of
the results that are intuitively true. They also enable us to
explore cases that have not been addressed to determine the
(sub)optimality of orthogonal transmissions compared with
the overlay transmission.

Index Terms— Sum capacity, vector Gaussian multiple
access channel, frequency division multiple access

1. INTRODUCTION

The capacity region of a multiple access channel (MAC) was
established in [1]. While it is shown that the capacity region is
achievable using overlay transmission, it is also well known
that, for a scalar Gaussian MAC, orthogonal transmissions,
i.e., frequency division multiple access (FDMA) or time di-
vision multiple access (TDMA) under an average power con-
straint, can achieve the sum capacity. As such, if only the
system throughput is of concern, orthogonal transmissions are
suf cient, resulting in a much simpli ed transceiver structure,
i.e., no successive interference cancellation is needed.
With vector GaussianMAC, the above claim - that orthog-

onal transmissions achieve the sum capacity - is not necessar-
ily true. Indeed, it is observed that in most cases orthogonal
transmissions fall well short of achieving the sum capacity of
a vector Gaussian MAC [2]. Focusing on FDMA, our goal is
to establish the suf cient and necessary conditions for orthog-
onal transmissions to be optimal in achievable sum rate for a
vector Gaussian MAC. The established conditions provide a
uni ed framework behind many intuitive and well known re-
sults. In addition, it allows us to examine cases that have not
been explored before in terms of the (sub)optimality of or-
thogonal transmissions for vector Gaussian MAC.

∗This work was supported in part by AFOSR under Grant FA9550-06-1-
0051 and by NSF under Grant CCF-0546491.

The paper is organized as follows. In Section 2, we present
the channel model and give the main results, namely the suf -
cient and necessary conditions for FDMA to achieve the sum
capacity. In Section 3 we examine several cases using this
uni ed framework to determine the (sub)optimality of orthog-
onal transmissions. We conclude in Section 4.

2. MAIN RESULTS

Consider a two-user vector Gaussian MAC

y = H1x1 + H2x2 + n

where Hi is a r × ti channel matrix, xi and y are ti × 1
transmit and r×1 receive signal vectors respectively, Si is the
ti×ti covariance matrix of xi with power constraint tr(Si) ≤
Pi, n is a r × 1 noise vector, with E[nn†] = I. Both the
transmitter and receiver have full channel state information.
For simplicity, we useMAC(H1,H2, P1, P2) to denote this
vector Gaussian MAC, of which, the sum capacity is

C = max
tr(S1)≤P1,tr(S2)≤P2

log
∣∣∣H1S1H

†
1 + H2S2H

†
2 + I

∣∣∣ (1)

It was established in [3] that the suf cient and necessary con-
dition to achieve the sum capacity is the mutually water lling
scheme. On the other hand, the maximum achievable sum
rate by using FDMA is

CF = max
tr(S1)≤P1,tr(S2)≤P2,0≤α≤1{

α log

∣∣∣∣ 1

α
H1S1H

†
1 + I

∣∣∣∣ + ᾱ log

∣∣∣∣ 1

ᾱ
H2S2H

†
2 + I

∣∣∣∣
}
(2)

where α is the fraction of bandwidth allocated to the rst user
and ᾱ = 1 − α. Implicitly used in the above de nition is
the narrowband channel assumption, i.e., at fading channels.
Observe that for a given α, the maximum sum rate, denoted
by CF (α), is obtained by two independent single user water
llings in their respective channels. In addition, we have [4]

Proposition 1 CF (α) is a concave function of α.

This proposition guarantees the convergence to the global
maximum CF using simple gradient methods [5]. Our goal is
to nd the suf cient and necessary conditions such thatCF =
C. Our main result is summarized below.
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Theorem 1 ForMAC(H1,H2, P1, P2), FDMA can achieve
its sum capacity if and only if there exist 0 < α < 1, S1opt,
and S2opt that jointly satisfy

1

α
H1S1optH

†
1 =

1

ᾱ
H2S2optH

†
2 (3)

S1opt = arg max
tr(S1)≤P1

log

∣∣∣∣ 1

α
H1S1H

†
1 + I

∣∣∣∣ (4)

S2opt = arg max
tr(S2)≤P2

log

∣∣∣∣ 1

ᾱ
H2S2H

†
2 + I

∣∣∣∣ (5)

Proof: We rst introduce the following lemma, established
by considering a MAC with H1 = H2 = H, tr(S1) ≤ βP ,
tr(S2) ≤ β̄P , and invoking Theorem 1 of [3]:

Lemma 1 IfSopt = argmaxtr(S≤P ) log
∣∣ 1
α
HSH† + I

∣∣, where
α > 0 is a constant, then for any β ∈ (0, 1), β

α
HSoptH and

β̄
α
HSoptH satisfy the mutually water lling condition.

Suf ciency From Eqs. (3)-(5), by choosing S1 = S1opt and
S2 = S2opt, the achievable sum rate is

log
∣∣∣H1S1optH

†
1 + H2S2optH

†
2 + I

∣∣∣
= log
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From Lemma 1,H1S1optH

†
1, and

ᾱ
α
H1S1optH

†
1 (orH2S2optH

†
2)

satisfy the mutually water lling condition. From Theorem 1
of [3], they achieve the sum capacity.
Apply FDMA to the same channel with S1 = S1opt, S2 =

S2opt and the bandwidth allocation factor α, the sum rate is

CF = α log

∣∣∣∣∣H1S1optH
†
1

α
+ I

∣∣∣∣∣ + ᾱ log
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†
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∣∣∣∣ = C

i.e., it achieves the sum capacity.
Necessary condition Assume FDMA can achieve the sum
capacity with α,S1opt,S2opt. We only need to show that (3)
must be satis ed. Since

C = α log

∣∣∣∣∣H1S1optH
†
1

α
+ I

∣∣∣∣∣ + ᾱ log

∣∣∣∣∣H2S2optH
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(a)

≤ log
∣∣∣H1S1optH

†
1 + H2S2optH

†
2 + I

∣∣∣ (b)

≤ C

where (a) follows from the concavity of log |·|with equality if
and only if (3) is true, and (b) follows from the sum capacity
de nition. Since equality must hold, (3) must be true. Q.E.D.
Conditions (4) and (5) can be interpreted as that Siopt wa-

ter lls Hi for the given α. To be able to dissect more com-
plicated cases, we now present a set of conditions derived di-
rectly from Theorem 1. Before proceeding, we assume that
the channel matrices admit respective singular value decom-
positions Hi = UiΣiV

†
i , i = 1, 2, and the singular val-

ues are denoted respectively by σ1j and σ2l with correspond-
ing left singular vectors u1j and u2l. Furthermore, de ne

ri
�
= rank(Hi). Without loss of generality, the singular val-

ues are assumed in descending order. We have

Theorem 2 For a MAC(H1,H2, P1, P2), FDMA achieves
the sum capacity if and only if there exists an integer 1 ≤
m ≤ min{r1, r2} that satis es the following conditions.
Singular value conditions For some constant k,

σ2
11

σ2
21

= · · · =
σ2

1m

σ2
2m

= k (6)

Singular vector conditions For any σ1n1−1 �= σ1n1
=

σ1n1+1 = · · · = σ1n2
�= σ1n2+1 where 1 ≤ n1 ≤ n2 ≤ m,

S{u1n1
, · · · ,u1n2

} = S{u2n1
, · · · ,u2n2

} (7)

where S{u1, · · · ,uL} denotes the subspace spanned by u1,
· · · , uL. In the event that all singular values are distinct, we
have u1i = ±u2i for 1 ≤ i ≤ m.
Power constraint conditions

v1P2 = v2P1 (8)

where
r1∑

i=1

(
v1 −

α

σ2
1i

)+

=

m∑
i=1

(
v1 −

α

σ2
1i

)
= P1 (9)

r2∑
i=1

(
v2 −

ᾱ

σ2
2i

)+

=

m∑
i=1

(
v2 −

ᾱ

σ2
2i

)
= P2 (10)

α =
kP1

kP1 + P2
(11)

where (x)+
�
= max{x, 0}.

Eqs. (6) and (7) establish that the two channel matrices must
have proportional singular values and perfectly aligned sin-
gular vectors, while the last condition dictates that the corre-
sponding power constraints must be such that the respective
water lling uses the same number of eigenmodes for the two
users in the FDMA transmission for the optimal α.

3. APPLICATIONS

The suf cient and necessary conditions in Theorem 1 or 2 ap-
pear to be overly restrictive, i.e., such conditions are rarely
satis ed for the general vector Gaussian MAC. The results,
however, provide a uni ed approach in determining the sum
capacity optimality of orthogonal transmissions. More im-
portantly, Theorem 2 also allow us to gain insight into how
to quantify the suboptimality of orthogonal transmissions as
demonstrated in this section.

3.1. FDMA is optimal

Example 1 r = 1, t1, t2 ≥ 1.

Example 2 H1 = γH2A, γ is a constant andAA† = I.
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Example 3 r ≤ min{t1, t2},H1 andH2 have identical sin-
gular values σij = σi, i = 1, 2; j = 1, 2, · · · , r.

One can readily show that CF = C for Examples 1-3 us-
ing Theorem 2. Fig.1 is a special case of Example 2 with
CF = C when α = 0.8. The example in [3, page 148] is
also achievable by FDMA with α = 0.5. In the above exam-
ples the channel matrices make the power constraint automat-
ically satis ed regardless of the values of P1 and P2. There
are cases that, even if the channel matrices satisfy the singular
value/vector constraints, one still need the right P1 and P2.

Example 4 Assume that for some m ≥ 1, Eq. (6) as well
as the associated singular vector conditions are satis ed but
σ2
1,m

σ2
1,m

�=
σ2
1,m+1

σ2
1,m+1

, if Pi > m
σ2
1,m+1

−
∑m

j=1
1

σ2
i,j

for either i = 1

or 2, the power conditions are violated and FDMA is subopti-
mal due to the generous power constraint, which favors over-
lay transmission with successive interference cancellation.

To elaborate, considerH1 =

[
1 0
0 1

3

]
,H2 =

[
1
2 0
0 1

4

]
.

Then from Eqs. (8)-(11), CF = C only when P1 + P2

4 < 3.

3.2. FDMA is suboptimal

A simple example for FDMA to be subpotimal is σ11

σ21
�= σ12

σ22

and u11 �= ±u21. Next, we decouple the singular value and
vector conditions, and use Theorem 2 to evaluate their indi-
vidual impact on the sum capacity achievability of FDMA.

3.2.1. Singular vector

We rst develop a mechanism that allows us to quantify the
relation of singular vectors and CF

C
. The singular value con-

ditions are assumed to be satis ed, but the subspaces spanned
by the corresponding singular vectors are now different. The
difference can be measured by the distance of subspaces, de-
ned as [6]
dist(U1,U2) � ||Q1 − Q2||2 = σmax (Q1 − Q2) (12)

where Ui, i = 1, 2 are the subspaces,Qi is the orthogonal pro-
jection matrix for Ui, and the 2-norm ofQ1 −Q2 is its largest
singular value. When U1 and U2 have the same dimension,
their largest principal angle φ is shown to be [6]

φ = sin−1 (dist (U1,U2)) (13)

If H1 and H2 are n × n real matrices, the unitary matrix
U2 can be obtained by rotating U1 along an axis de ned by
the subspace A of dimension n − 2 by an angle θ, U2 =
rot {U1,A, θ}. By choosing A and let θ vary in [0, 2π], dif-
ferentU2 is generated. This mechanism allows us to quantify
the relation of CF

C
and φ. Here is an example.

Example 5 U1 = V1 = V2 = I, Σ1 = diag
(
1, 1, 1

9 , 1
10

)
,

Σ2 = diag
(
2, 2, 1

8 , 1
15

)
, A =

[
0 0 0 1
1 1 1 1

]T

, U2 =

rot(I,A, θ), θ ∈ [0, 2π], P1 = P2 = 1.

The singular value conditions are satis ed and power is
allocated to only the rst two eigenmodes. Signals are trans-
mitted in the subspaces Ui spanned by [ui1,ui2], where ui1

and ui2 are unitary vectors. The projection matrix for Ui is,
Qi = [ui1,ui2][ui1,ui2]

T (14)
From Eqs. (12)-(14), the angle of U1 and U2 is

φ = sin−1
(
σmax

{
u11u

T
11 + u12u

T
12 − u21u

T
21 − u22u

T
22

})
The results are shown in Figs.2 and 3. While different A re-
sults in different curves of θ and φ, for all the cases, CF

C
is

monotonically decreasing with φ. When θ = 0, 2π, φ = 0,
U1 and U2 coincide, the conditions of Theorem 2 are satis ed
and CF

C
= 1. This is when the mutual interferences from the

two users are the worst, and FDMA bene t the most via or-
thogonization. When θ = 0.66π, 1.33π, φ = 0.5π, U1 and U2

are orthogonal to each other and CF

C
becomes the minimum.

This agrees with intuition: the orthogonality of the subspaces
allows both users to communicate at maximum rate without
interfering each other.

3.2.2. Singular value

We still assume H1 and H2 are n × n real matrices. The
singular vector conditions are satis ed, but the singular value
conditions are not. Without loss of generality, we can assume
U1 = U2 = V1 = V2 = I.

Example 6 H1 =

[
1 0
0 1

]
, H2 =

[
1 0
0 σ

]
, −20dB ≤

σ ≤ 20dB, P1 = P2 = 1.

Table 1. Overlay transmission.
σ (dB) user 1 user 2 C (bit)
< 0 (0, 1) (1, 0) 2

= 0 (a, 1 − a) (1 − a, a) 2

> 0 (1, 0) (0, 1) 1 + log(1 + σ2)

Table 2. FDMA transmission.
σ (dB) user 1 user 2 C (bit)
≤ −4.8 ( 1

2
, 1

2
) (1, 0) 1.79

> −4.8 ( 1
2
, 1

2
) (αo

2
+ 1−αo

2σ2 , 1 −
αo

2
−

1−αo

2σ2 ) max CF (α)

The results are shown in Fig. 4, the sum rate and optimal
power allocation for overlay and FDMA are shown in Table
1 and 2. For overlay transmission, the second user always
put all the power to the eigenmode of the largest eigenvalue,
while the rst user adapts to put all the power to the orthog-
onal direction. For FDMA, the optimal frequency allocation

is αo = 0.48 when σ ≤
(
1 + P2

1−αo

)− 1
2

= −4.8dB, and
αo = argmaxα∈[0,1] CF (α) when σ > −4.8dB, where

CF (α) =

{
α log

(
P1

2α
+ 1

)2

+ ᾱ log

[
σP2

2ᾱ
+

1 + σ2

2σ

]2
}
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So when σ = 0dB, Sf2 = 0.5I, αo = 0.5, CF = C = 2bit.
In the neighborhood of 0dB, CF

C
decreases as σ moves away

from 0dB. When σ → ∞, αo → 0 and

lim
σ→∞

CF

C
= lim

σ→∞

log
[

σ
2 + σ

2

(
1 + 1

σ2

)]2
1 + log (1 + σ2)

= 1

One user’s rate becomes dominant, thus FDMA asymptoti-
cally achieves the sum capacity with bandwidth allocation in-
creasingly favoring to the dominant user. However, CF

C
is not

a monotone function as in Example 5.

4. CONCLUSION AND EXTENSION

Orthogonal transmission in vector Gaussian MAC was stud-
ied in this paper. We derived suf cient and necessary condi-
tions for FDMA to achieve the sum capacity. We note here
that the results can be easily generalized for MAC with more
than two users. We point out here that parallel results using
TDMA can also be obtained.
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