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ABSTRACT

This paper investigates the problem of transceiver design with in-
dividual rate constraints for multiuser MIMO systems. We focus on
linear processing with two design goals: one is to maximize the min-
imum rate per user under a total power constraint, and the other is to
minimize the total transmit power while maintaining certain rate re-
quirements. The optimization is carried out in an alternating manner
in both virtual uplink and downlink channels. Each iteration contains
the optimization of uplink power allocation, and uplink and down-
link MMSE receive filters. The uplink power control to balance the
rates or to achieve the rate requirements is taken by optimizing the
product of MSEs, which can be formulated as a Geometric Program-
ming (GP) problem.

Additionally, this alternating optimization approach is suitable
for the case with successive interference cancellation (SIC) in the
uplink and interference pre-compensation (IPC) in the downlink as
well. With a fixed precoding ordering, this provides new sub-optimal
solutions to the above problems.

Index Terms— multiuser MIMO, capacity region, transceiver
optimization, max-min fairness

1. INTRODUCTION

The achievable sum capacity region of multiuser MIMO Gaussian
broadcast channels was characterized in an information theoretic
context. However, the search for efficient practical schemes to achieve
the limit is still ongoing. Existing schemes are usually under the as-
sumption of ’dirty paper precoding’, e.g., [1, 2] for sum-capacity op-
timization and [3, 4, 5] for individual rate optimization. However,
dirty paper precoding techniques are difficult for practical imple-
mentation. Moreover, the optimal precoding ordering for individual
rate optimization is still an open issue [3, 5].

With linear processing, one commonly used strategy is to block-
diagonalize the channel, e.g., [6, 7]. However, such a zero-forcing
(ZF) approach suffers from noise/power enhancement and has a re-
striction on the number of transmit and receive antennas. Therefore,
ZF is generally not capacity achieving strategy. To achieve the ca-
pacity limit, MMSE estimation can be utilized, since it plays an im-
portant role in approaching the information-theoretic limits of linear
Gaussian channels [8].

In this paper, we first focus on linear processing with MMSE
estimation, and later we show how the concepts can be extended to
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the case that successive interference cancellation (SIC) is applied in
the uplink and interference pre-compensation (IPC) in the downlink
(also known as ’dirty paper precoding’).

We consider a multiuser MIMO system, where K users can per-
form spatial multiplexing with several data streams (layers). The
transmit and receive filters are jointly optimized with respect to two
design criteria. One is to balance the rates among users with a total
power constraint

max min
k

Rk s.t. Psum ≤ Pmax, (1)

where Rk is the achieved rate for the kth. Psum and Pmax are the re-
quired total power and the total power limit, respectively. The other
problem is to minimize the total transmit power under individual rate
constraints, i.e.,

min Psum s.t. Rk ≥ γk, ∀k, (2)

where γk is the target for the kth user.

For both design goals, the optimization is over the powers, trans-
mit and receive filters, by switching between the virtual uplink and
downlink channels. Specifically, we first allocate the uplink powers
to all layers by optimizing the product of MSEs, which can be formu-
lated as a Geometric Programming (GP) problem. This differs from
the approach of formulating a GP problem with respect to SINR [9],
where an approximation SINR ≈ 1 + SINR is made. Actually,
this approach can not be applied to the user-rate optimization, since
each user can have more than one data stream, which means that the
rate per user is the sum of rates per layer. Therefore, balancing the
product of SINR is not equivalent to balancing the user-rates; fur-
thermore, to achieve a certain user-rate requires the optimal individ-
ual layer-SINR targets, however, this is unknown in general. Then,
the transmit and receive filters are updated as MMSE filters, which
minimize the layer-MSE independently, so that each user achieves
its maximum rate. Additionally, MSE duality [10] ensures that the
same performance can always be achieved in both virtual links. This
leads to a monotonic sequence of rates.

This alternating optimization approach can be applied to the case
with SIC/IPC for a fixed precoding/decoding ordering. Note that, in
[4] the solution for (2) is found by bi-section over the transmit power
obtained by solving (1). Generally, such an approach is not compu-
tational efficient. Although our proposed algorithms need additional
ordering strategies, we observe that with a simple ordering, where
the users are ordered according to the channel norms, the gap to the
global optimum [4] is small.
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2. SYSTEM MODEL AND MSE DUALITY

We consider a standard multiuser MIMO downlink model with NT

transmit antennas at the base station and K decentralized receivers,
each with NRk antennas. The channel matrix is H = [H1, ..., HK ]

where Hk ∈ C
NT×NRk models the channel between the kth user

and the base station. Assume that independent unity-power symbols
d = [dT

1 , ..., dT
K ]T with E{ddH} = I , are transmitted, where dk ∈

C
Mk×1 is the data vector to be transmitted to the kth mobile. The

total number of the transmit (active) data streams (layers) is Nd =∑K
k=1 Mk. Zero-mean white Gaussian noise is denoted by n =

[nT
1 , ..., nT

K ]T ∼ N (0, σ2
nI). The data and the noise are statistically

independent.
For convenience, the transmit and receive filters are separated

into two parts, a matrix with unity-norm columns and diagonal ma-
trices. In particular, the transmit filter is U = UQ1/2 and receive

filters are T
H
k = Q

−1/2
k βkT H

k , ∀k, where Q = diag{Q1, ..., QK}
contains the transmit powers of all users. Filters U = [U 1, ..., UK ]
and T = diag{T 1, ..., T K} are with normalized columns ‖ui‖2 =
1 and ‖ti‖2 = 1, ∀i, respectively. The matrix β = diag{β1, ..., βK}
is a diagonal matrix. The system model is given by

d̂i = t
H
i HH

Nd∑
j=1

ujdj + t
H
i n, ∀i ∈ {1, ..., Nd}.

The equivalent uplink channel is obtained by switching the role
of the normalized transmit and receive filters. The kth transmit filter
is T k = T kP

1/2
k and receive filter is U

H
= P−1/2βUH . The

quantities H , U , T and β are the same as for the downlink model.
The power allocation P = diag{p} = diag{P 1, ..., P K}, how-
ever, may differ from the downlink allocation Q = diag{q}. It is
assumed that both links fulfill the same sum power constraint, i.e.,
‖p‖1 = ‖q‖1 ≤ Pmax.

Defining a diagonal matrix [D]ii = β2
i uH

i Htit
H
i HHui −

2βiRe{uH
i Hti}+ 1 and a matrix

[Ψ]ij =

{
uH

i Htjt
H
j HHui, i 	= j

0, i = j
,

we obtain the uplink power allocation

p = σ2
n(ε −D − β2Ψ)−1β21Nd

, (3)

and downlink power allocation

q = σ2
n(ε −D − β2ΨT )−1β21Nd

, (4)

to achieve the same feasible MSE value ε = diag{[ε1, ..., εNd ]}.
With the same set of T , U , β and a total power limit Pmax, it

has been shown in [10] that the same MSE values ε1, . . . , εNd can be
achieved in the uplink if and only if the same values can be achieved
in the downlink. Thus, both links have the same achievable MSE
region under a sum power constraint.

2.1. Uplink and Downlink MMSE Receive Filters

In the uplink channel for fixed power allocation P and transmit fil-
ter T , the MSE of each layer can be minimized independently by
MMSE receive filters

U kβkP
−1/2
k = (HT P T HHH + σ2

nI)−1HkT kP
1/2
k , ∀k.

For convenience, we define

Ũ k = U kβk = (HT P T HHH + σ2
nI)−1HkT kP k, ∀k. (5)

The diagonal matrix βk contains the column norms of Ũ k.

Similarly, for the downlink channel, with fixed downlink power
allocation Q and transmit filter U , the MMSE receive filters are

given as T̃ kQ
−1/2
k , where

T̃ k = T kβk = (HH
k UQUHHk + σ2

nI)−1HH
k U kQk, ∀k. (6)

The diagonal matrix βk contains the column norms of T̃ k.

2.2. Alternating Optimization Framework

If we want to optimize the transmission over a downlink channel
HH , then the equivalent uplink channel H only serves for the pur-
pose of optimization, and vice versa. In combination with the MSE
duality, this results in an alternating optimization framework:

repeat

1. uplink channel:

(a) for fixed T , U and β, find the optimal P according to
the optimization problem under consideration

(b) for fixed T and P , update U and β with (5)

2. downlink channel:

(a) for fixed T , U and β, find the downlink power allo-
cation Q with (4) achieving the same MSEs as in the
uplink

(b) for fixed Q and U , update T and β with (6).

until accuracy is reached.

To derive algorithms from this framework, the essential issue is to
specify the uplink power allocation (step 1.(a)) according to the op-
timization problems under consideration. This will be addressed in
the next section.

3. UPLINK POWER CONTROL

3.1. Rate Balancing under a Total Power Constraint (1)

Under the common assumption of Gaussian channels, there is a one-
to-one monotonic relationship between rate and SINR

Ri = log2(1 + SINRi), ∀i,

where SINRi =
|tHi HHui|2∑Nd

j=1,j �=i
|tHi HHui|2+σ2

nt
H
i ti

, ∀i.
Moreover, we have the well known relation between the achieved

SINR and minimum MSE

MMSE =
1

SINR + 1
. (7)

Therefore, the rate of the kth user can be expressed as a function of

MMSE, i.e., Rk = − log2

[∏Mk
i=1 MMSEi

]
.

With fixed filters T and βU , we have

Mk∏
i=1

εi =

Mk∏
i=1

{
p−1

i [(D + β2Ψ)p + σ2
nβ21Nd

]i
}

,

which is a posynomial. Hence, the power optimization for (1) can
be formulated as a Geometric Programming (GP) problem [11, 9],
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min
p,t

t

s.t.

Mk∏
i=1

[
p−1

i [(D + β2Ψ)p + σ2
nβ21Nd

]i
] ≤ t, ∀k

pi ≥ 0, ‖p‖1 ≤ Pmax, t > 0, ∀i. (8)

The global optimum can be found by existing optimization tools.

3.2. Individual Rate Constrained Power Minimization (2)

For (2), instead of solving (8), the power has to be minimized while
achieving the rate requirements, i.e.,

min
p

‖p‖1

s.t.

Mk∏
i=1

{
p−1

i [(D + β2Ψ)p + σ2
nβ21Nd

]i
} ≤ 2−γk , ∀k

pi ≥ 0, ∀i. (9)

Optimization (9) is a GP problem as well. Therefore, the global
optimum can be found.

4. JOINT TRANSCEIVER OPTIMIZATION AND
CONVERGENCE

Joint transceiver optimization for problems (1) and (2) is based on
the alternating optimization framework and the uplink power control
strategies in the previous section. Joint transceiver optimization al-
gorithms are summarized in Table 1. Superscript (·)(n) denotes the
nth iteration step.

Theorem 1. The total transmit power P
(n)
sum obtained by Algorithm

1 is monotonically decreasing in n. (Sketch of the proof is given in
the Appendix.)

Theorem 2. The max mink R
(n)
k obtained by Algorithm 2 is mono-

tonically increasing in n. (Sketch of the proof is given in the Ap-
pendix.)

The above iterations might stop at local optima depending on

different initializations of T
(0)
k , ∀k. Therefore, a ’favorable’ initial-

ization is desired. How to choose an initialization which ensures the
global optimum is an interesting problem for future work. A recom-
mended initialization is the singular vectors of the channel matrix.

5. EXTENSION: OPTIMIZATION WITH IPC

Note that, the relation between the SINR and MMSE (7) holds as
well for the case with SIC in the uplink and IPC in the downlink.
Assuming that error propagation or precoding loss are neglected,
uplink SIC/downlink IPC imposes a triangular structure on the ef-
fective channel. Particularly, without loss of generality, we assume
a precoding order Nd to 1 in the downlink and decoding order 1 to
Nd in the uplink.

In order to find a transceiver strategy that performs well with
respect to the design goals (1) and (2) with IPC, we can follow the
alternating approach used in the above sections. To this end, we have
to first specify the uplink power control. Fortunately, after substitut-
ing the matrix Ψ by Ψu = Triu(Ψ) (the upper triangular part of a
matrix), the optimization problem (8) and (9) are still GP problems.
Optimal solutions exist.

On the other hand, the uplink and downlink receive filters have
to take the SIC and IPC into account, respectively. Particularly, in
the uplink channel, the receive filter UβP−1/2 is updated as the
MMSE-DFE feedforward filter

βip
−1/2
i ui = p

1/2
i [H(

Nd∑
l=i

pltlt
H
l )HH + σ2

nI)]−1Hti. (10)

Similarly, the downlink MMSE receive filter for each layer is given
by

βiq
−1/2
i ti = q

1/2
i [HH

k (

i∑
l=1

qlulu
H
l )Hk + σ2

nI)]−1Hkui. (11)

We summarize Algorithm 3 for (1) and Algorithm 4 for (2) with
IPC in Table 1. The convergence of the algorithms can be proved by
a similar reasoning as for the linear processing case.

Corollary 1. The total transmit power P
(n)
sum returned by Algorithm

3 is monotonically decreasing in n and the rate max mink R
(n)
k re-

turned by Algorithm 4 is monotonically increasing in n.

6. SIMULATION RESULTS

We illustrate the performance of the proposed algorithms for a three-
user MIMO system with 5 transmit antennas at base station and 2
receive antennas at each mobile. The performance measures are av-
eraged over 100 randomly chosen channel realizations (flat fading
channel is assumed).

Fig. 1 shows the average balanced individual rate level vs. the
number of iterations. The total power is limited to 10. It can be
observed that the proposed algorithms converge and the scheme with
IPC achieves a higher level than that with linear processing, which
is expected. The line with circles denotes the case without ordering
and the line with dots is the case with a simple ordering strategy,
where the users are ordered according to their channel norms. A
slight improvement is observed and the gap to the global optimum
[4] (plotted by the dashed line) is small.

The convergence behavior of Algorithm 2 and 4 is shown in
Fig. 2. The targets are assumed to be γ1 = 2, γ2 = 1, γ3 = 3.
We can see that the average total required power converges. With
IPC and ordering, the performance is improved as compared with
the case with linear processing.

7. CONCLUSIONS

We propose iterative algorithms to jointly optimize the transmit and
receive filters in multiuser MIMO systems. The design goals are
maximizing the minimum rate under a total power constraint, and
minimizing the total transmit power with individual rate require-
ments. The important steps in the iterations are the optimal power
allocation strategies proposed in Section 3. We show that the opti-
mization of user-rates can be carried out by minimizing the product
of layer-MSEs together with MMSE filtering. Facilitated by the new
power control strategies and based on the MSE duality, the proposed
algorithms are proved to be convergent.

8. APPENDIX

A. Sketch of proof of Theorem 1
During each iteration, the total transmit power does not change, i.e.,

P
(step5,n)
sum = P

(step6,n)
sum = P

(step7,n)
sum whereas the geometric MSE val-

ues per user is decreased, or equivalently, − log2

∏Mk
i ε

(step7,n)
i ≥ γk ,

∀k. In the next iteration, by optimizing the power allocation to fulfill the rate
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Fig. 1. Average balanced individual rate vs. number of iterations. Param-
eters: 100 flat fading channel realizations, Pmax = 10, K = 3, NT = 5,
NR1 = NR2 = NR3 = 2, σ2
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0 5 10 15 20 25 30
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of Iterations

A
ve

ra
ge

 T
ot

al
 T

ra
ns

m
it 

P
ow

er

Algorithm 2 (with linear processing)
Algorithm 4 (with IPC & heuristic ordering)

Fig. 2. Average total transmit power vs. number of iterations. Pa-
rameters: 100 flat fading channel realizations, individual rate requirement:
r1 = 2, r2 = 1, r3 = 3, K = 3, NT = 5, NR1 = NR2 = NR3 =

2, σ2
n = 0.1

targets γk , a lower power level is needed, thus P
(step5,n)
sum ≥ P

(step5,n+1)
sum .

B. Sketch of proof of Theorem 2

In iteration n, we have the following (in)equalities

Mk∏
i

ε
(step5.a,n)
i ≥

Mk∏
i

ε
(step5.b,n)
i =

Mk∏
i

ε
(step6.a,n)
i

≥
Mk∏

i

ε
(step6.b,n)
i =

Mk∏
i

ε
(step7.a,n)
i ≥

Mk∏
i

ε
(step7.b,n)
i

≥
Mk∏

i

ε
(step5.a,n+1)
i , ∀k.

The equalities hold due to the MSE duality and the first three inequalities due
to uplink or downlink MMSE filtering. Finding the optimal power allocation
by GP, leads to the last inequality. Note that decreasing of the geometric
MSE values means increasing of the rates. Thus the individual rate per user
is monotonically increasing with each iteration.

Table 1 Algorithm 1, 2, 3, 4: Transceiver Optimization for Rate
Balancing (1) and Rate Constrained Power Minimization (2)

1: initialize: [Ut,St,V k] = svd(Hk), T
(0)
k = V k , [P

(0)
k ]ii =

Pmax/K/NRk
, ∀k, and nmax

2: compute U
(0)
k and β

(0)
k , ∀k, with (5) [Algorithm 1, 2] or (10)

[Algorithm 3, 4]
3: repeat
4: n← n + 1
5: uplink channel:

a. for given T
(n−1)
k , U

(n−1)
k , and β

(n−1)
k , ∀k, find optimal

power allocation p by solving (9) [Algorithm 1, 3 (3 with
Ψu)], or by solving (8) [Algorithm 2, 4 (4 with Ψu)]

b. updateU
(n)
k and β

(n)
k , ∀k, with (5) [Algorithm 1, 2] or with

(10) [Algorithm 3, 4]

6: downlink channel:

a. computeQ(n), with (4) [Algorithm 3, 4 with Ψu)]

b. update T
(n)
k and β

(n,tmp)
k , ∀k, with (6) [Algorithm 1, 2] or

with (11) [Algorithm 3, 4]

7: uplink channel:

a. compute P (n) with (3) [Algorithm 3, 4 with Ψu)]

b. updateU
(n)
k and β

(n)
k , ∀k, with (5) [Algorithm 1, 2] or with

(10) [Algorithm 3, 4]

8: until required accuracy is reached or n > nmax
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