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ABSTRACT
The type and quality of the channel state information at the trans-
mitter of a fading multiple-input multiple-output system greatly af-
fects the ergodic capacity of the wireless link. In order to compare
and unify the different proposals of transmit strategies for different
scenarios, recently classes of MIMO channels are introduced that
share a common optimal transmit strategy. In this work, we derive
the ergodic capacity achieving transmit strategy for the class of uni-
tary invariant norm feedback which complements statistical channel
information at the transmitter. The impact of the short-term feed-
back quality is illustrated by the beamforming optimality range. The
higher the feedback norm is the more likely is single stream beam-
forming to be optimal.

Index Terms— MIMO system, ergodic capacity, short-term and
long-term CSI, unitary invariant norm feedback.

1. INTRODUCTION

The increasing need for fast and reliable wireless communication
links opens the discussion about systems with multiple antennas both
located at the transmitter and the receiver, so called multiple-input
multiple-output (MIMO) systems [1]. Recently, [2] shows that MIMO
systems have the ability to reach higher transmission rates than one-
sided array links.

Many results regarding the capacity of multiple-input single-
output (MISO) and MIMO systems under different levels of CSI
and the corresponding transmission strategies are recently published
[3]. For example, it is shown that even partial CSI at the transmit-
ter can increase the capacity of a MISO system and transmission
schemes for optimizing capacity in MISO mean- and covariance-
feedback systems were analyzed [4]. The complete characterization
of the impact of correlation on the ergodic capacity in MISO systems
is provided in [5].

Recently, the question about the ergodic capacity achieving trans-
mit strategy for the most general scenario with covariance and mean
feedback is discussed in [6, 7, 8]. Further on, the optimal transmit
strategy for a certain class of MIMO channels is described in [9].
In contrast to a certain class of channels, in this work we consider a
certain class of short term feedback strategies that complement the
long-term statistics known at the transmitter. The transmitter is as-
sumed to know either the channel covariance or the channel mean.
The short-term feedback is assumed to belong to the class of unitary
invariant norms of the channel matrix. This class of short-term feed-
back comprehends many common feedback norms, e.g. �-2 norm
feedback or trace feedback. The optimal transmit directions for this
type of CSI at the transmitter are shown to correspond to the eigen-
vectors of the channel covariance matrix or the channel mean gram

matrix irrespective of the short-term feedback of this type. How-
ever, the optimal power allocation is affected by the short-term feed-
back. The impact of the channel norm is characterized in terms of the
beamforming optimality range, i.e. the SNR range in which single-
stream beamforming achieves the ergodic capacity.

With statistical CSI at the transmitter, the following relation be-
tween channel quality and optimal number of multiplexed data streams
was observed: The better the channel, i.e. the higher the SNR, the
more channels are supported. Interestingly, with additional short-
term norm feedback, the relation between channel quality and op-
timal number of multiplexed data streams is the other way round:
The larger the channel norm (for fixed SNR), the less channels are
supported.

2. CHANNEL MODEL

Consider the quasi-static block flat-fading channel model. The re-
ceived vector is given by y = Hx + n. The channel matrix H
has dimension nR × nT . Denote the minimum n = min(nT , nR)
and the maximum m = max(nT , nR). The singular values of the
channel matrix H are ordered in descending order and given by
λ1 ≥ λ2 ≥ ... ≥ λn ≥ 0. Denote the vector of singular values
as λ = [λ1, ..., λn]. The AWGN vector n is complex independent
and identically Gaussian distributed (iid) with zero mean and vari-
ance σ2n, i.e. n ∼ CN (0, σ2n). Denote the inverse noise power by
Γ = 1

σ2
n

. The SNR is then SNR = P
σ2

n
= ΓP .

In this work, we study either a correlated Rayleigh-fading MIMO
channel or an uncorrelated Ricean-fading MIMO channel. The non
line-of-sight (NLOS) channel matrix H for the case in which we
have correlated transmit and correlated receive antennas is modelled

as HNLOS = R
1
2
R ·W ·R

1
2
T with transmit correlation matrix RT =

UT DT UH
T and receive correlation matrix RR = URDRUH

R . The
random matrix W has zero-mean independent complex Gaussian
identically distributed entries, i.e. W ∼ CN (0, I). UT and UR

are the matrices with the eigenvectors of RT and RR respectively,
and DT , DR are diagonal matrices with the eigenvalues of the ma-
trix RT and RR, respectively, i.e. DT = diag[λT

1 , ..., λT
nT
] and

DR = diag[λR
1 , ..., λR

nR
]. Denote the vector of eigenvalues with

λT and λR respectively. Without loss of generality, we assume that
all eigenvalues are ordered with decreasing order, i.e. λT

1 ≥ λT
2 ≥

... ≥ λT
nT

.
Further on, we model the Ricean-fading channel matrix H by

an additional deterministic matrix H0 with tr(H0H
H
0 ) = nT nR as

H =
√

1
K+1

HNLOS+
√

K
K+1

H0 such that E [H ] =
√

K
K+1

H0.

Let the singular value decomposition of H0 be given by H0 =

U 0Λ0V
H
0 and define ζ =

√
K

K+1
and ζ′ =

√
1

K+1
. The Ricean
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K-factor describes the ratio of the power of the LOS and NLOS
component. The LOS component depends on the geometry of the
transmission scenario and can have rank equal to one up to rank
equal to min(nT , nR).

3. FEEDBACK MODEL, PERFORMANCE MEASURE, AND
NORM-FEEDBACK

The receiver is assumed to have gained perfect CSI due to e.g. pilot
assisted channel estimation. The transmitter has gathered a certain
knowledge about the channel statistics. It is assumed that the trans-
mitter knows either the channel correlation or the channel mean but
not both. Additionally, the receiver feeds back some kind of short-
term CSI that is a function of the instantaneous channel realization
f(H).

In the block fading model, the channel is constant for the coher-
ence time T . It is assumed that the coherence time T is large enough
to code over many blocks in order to achieve almost the mutual in-
formation. Then the mutual information maximized over the input
distribution has its usual meaning as the instantaneous capacity [10].
Denote the instantaneous mutual information for a certain channel
state H by

C(H ,Γ, Q) = log det
(
I + ΓHQHH

)
. (1)

The average with respect to C(H ,Γ, Q)1 describes the overall per-
formance and should be maximized. Since the transmitter does not
know H exactly, it relies on the long-term CSI and the short-term
CSI f(H) in choosing Q. Therefore, the average capacity is given
by

C(Γ) = Eρ

[
max

Q
EH (C(H ,Γ, Q)) |f(H) = ρ

]
. (2)

For maximization of (2), the optimization problem for each ρ has to
be solved under short-term power constraints.

Define a function f that acts on the instantaneous channel matrix
H , i.e. it maps from the set of C

nR×nT matrices to the positive real
numbers. The receiver feeds back the value of this function evalu-
ated for the current channel realization. Then the optimal transmit
strategy Q under long-term and short-term CSI is

max
Q

E

[
log det

(
I + ΓHQHH

)
|f(H) = ρ

]
s.t. Q � 0, trQ ≤ 1 (3)

There are various ways how to define the short-term CSI function
f(H). In [11], the spatially correlated MISO Rayleigh fading chan-
nel with feedback of the channel norm was studied. This corresponds
to f(h) = λ21(h), i.e. the largest eigenvalue. Later in [12], the
model was extended to include Ricean MISO channels as well.

Most common and often used short-term CSI functions f belong
to the class of matrix-norms f(H) = ||H ||. An important subclass
of matrix-norms that we will use in the following are the unitary
invariant norms f(H) = |||H |||. These norms have the property
that |||UHV ||| = |||H ||| for all unitary V and U . Further on, the
unitary invariant norms are related to symmetric gauge functions Φ
on R

n by [13, Theorem IV.2.1]

|||H |||Φ = Φ(λ(H)). (4)

1Note that the function C is used with different sets of parameters.

The vector λ(H) denotes the vector with singular values of H .
The symmetric gauge function Φ is a norm, permutation invariant
Φ(P x) = Φ(x), invariant against plus minus one weighting, i.e.
Φ(±x1, ...,±xn) = Φ(x1, ..., xn), and normalizedΦ(1, 0, ..., 0) =
1. For each unitary invariant norm there is a corresponding symmet-
ric gauge function and vice versa.

Consider the trace feedback of the outer product of the instan-
taneous channel matrix, i.e. f(H) = tr

(
HHH

)
. This feedback

corresponds to Φ(x) =
∑n

k=1 x2k which is obviously a symmetric
gauge function on R

n. Therefore this feedback belongs to the class
of unitary invariant norm feedback. Note that the feedback of �-2
norm in MISO channels mentioned above is a special case of trace
feedback. The �-2 norm is the only unitary invariant vector norm
[14].

In the following we will focus on the unitary invariant norm
feedback. For fixed norm ρ, the average mutual information is given
by

C(ρ,Γ, Q) = E

[
log det

(
I + ΓHQHH

)
| |||H ||| = ρ

]
. (5)

4. OPTIMAL TRANSMIT DIRECTIONS

The problem (3) is usually solved in two steps. The transmit co-
variance matrix is eigenvalue decomposed into the eigenvectors (or
beamforming vectors) and eigenvalues (corresponding to power al-
location). Then the optimal beamforming vectors are derived and
based on this result the remaining power allocation is performed.
For several important cases, the optimal beamforming vectors corre-
spond to the eigenvectors of the known component of the channel,
i.e. the correlation matrix or the mean matrix. As Myth 1 in [15]
shows this does not hold in general but should be carefully proven.
As pointed out in [12], the norm information provides in general also
spatial information. However, the proof of the next theorem follows
closely the lines of [16] and [17] and is omitted.

Theorem 1 Assume that the short-term CSI is a unitary invariant
norm of H , i.e. f(H) = |||H |||. Then for the correlated Rayleigh-
fading case, the optimal eigenvectors of Q that solve (3) are given
by U = UT . For the uncorrelated Ricean-fading case, the optimal
eigenvectors are U = V 0. In both cases, the achievable transmis-
sion rate does not depend on UT or V 0.

The expectation in the objective function is with respect to the
conditional pdf p(H | |||H |||). This pdf can be evaluated by Bayes
law as

p(H | |||H |||) = p(|||H ||| |H)p(H)

p(|||H |||) . (6)

Note that p(|||H ||| |H)2 only depends on the eigenvalues of H .
p(|||H |||) also depends only on the eigenvalues of H .

5. OPTIMAL POWER ALLOCATION

Let us define the transformed channel matrix as H̃ = UHUH

with the optimal beamforming matrix U from Theorem 1. Further,

2This pdf is basically an indicator function, i.e. it equals either zero or
one.
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h̃k is the k-th column of H̃ . For short-term unitary invariant norm-
feedback, the remaining power allocation problem reads

maxE

[
log det

(
I + Γ

nT∑
l=1

plh̃lh̃
H

l

) ∣∣∣∣∣|||H ||| = ρ

]

s.t.

nT∑
l=1

pl ≤ 1, pl ≥ 0. (7)

The problem is convex and therefore the Karush-Kuhn-Tucker opti-
mality conditions [18] apply. They are given by

E

[
h̃

H

l

(
I + Γ

nT∑
l=1

plh̃lh̃
H

l

)−1
h̃l

∣∣∣|||H ||| = ρ

]
= μ− νl

pkνk = 0, pk ≥ 0, νk ≥ 0,
nT∑
l=1

pl − 1 ≤ 0, μ(

nT∑
l=1

pl − 1) = 0, μ ≥ 0. (8)

For all active transmit directions pl > 0, the expectation in (8) is
equal to the waterlevel μ. For all inactive transmit directions pl =
0, the expectation in (8) is smaller than or equal to the waterlevel.
Therefore, the beamforming optimality condition [19] is described
in the next result.

Theorem 2 The optimal power allocation is single-stream beam-
forming p1 = 1, p2 = p3 = ... = pnT = 0 if and only if the
following condition is satisfied

E

[
h̃

H

1

(
I + Γh̃1h̃

H

1

)−1
h̃1

∣∣∣|||H ||| = ρ

]
≥

E

[
h̃

H

2

(
I + Γh̃1h̃

H

1

)−1
h̃2

∣∣∣|||H ||| = ρ

]
. (9)

Iterative algorithms for solving the power allocation problem are
proposed e.g. in [16] and can be extended to the case in (7) includ-
ing the conditional expectation. The characterization of the optimal
power allocation in previous work showed that the higher the SNR
the more streams are supported, i.e. pk > 0.

We give the following characterization of the beamforming op-
timality range. Define the difference in Theorem 2 as a function
Δ(Γ, ρ, λT , λR) = LHS −RHS of (9).

Lemma 3 For fixed channel norm ρ and spatial correlation λT ,
λR, there always exists a SNR point Γ∗ with

Δ(Γ, ρ, λT , λR)

{
≥ 0 for Γ ≤ Γ∗

< 0 for Γ > Γ∗
. (10)

The Lemma means that for all channel norms ρ and spatial cor-
relations there is a certain low SNR range in which single-stream
beamforming achieves capacity. Define Δ(0) = Δ(0, ρ, λT , λR).

Proof: The proof is based on the analytical properties of the func-
tionΔwith respect to Γ. Define the outer product of the k-th column

of H as H̃k = h̃kh̃
H

k . Decompose the difference into the two parts

f1(Γ) = E

[
tr

(
H̃1

[
I + ΓH̃1

]−1) ∣∣∣|||H ||| = ρ

]

and f2(Γ) analogue. Note that |||H ||| = |||H̃ |||.

1. The functions f1(Γ) and f2(Γ) are monotonic decreasing with
Γ. Further on, they are convex with respect to Γ.

2. It holds Δ(0) > 0 and lim
Γ→∞

Δ(Γ) < 0.

From these properties it follows, that there is exactly one intersection
point between f1(Γ) and f2(Γ), and (10).

The first property of f1(Γ) and f2(Γ) follows easily from the
first and second derivative of Δ with respect to Γ, i.e.

f ′l (Γ) = −E

[
tr

(
H̃ l

[
I + ΓH̃1

]−2
H̃ l

) ∣∣∣|||H ||| = ρ

]

f ′′l (Γ) = +2E

[
h̃

H

l H̃ l

[
I + ΓH̃1

]−3
H̃ lh̃l

∣∣∣|||H ||| = ρ

]
.

The second property follows from

Δ(0) = E

[
||h̃1||2 − ||h̃2||2

∣∣∣|||H ||| = ρ
]

> 0

and the representation of Δ(Γ) after applying the matrix inversion
lemma [14] to f1 and f2 given by

Δ(Γ) = E

[ ||h̃1||2 − ||h̃2||2Γ||h̃H

2 h̃1||2 − Γ||h̃1||2||h̃2||2
1 + Γ||h̃1||2∣∣∣|||H ||| = ρ

]
. (11)

Taking the limit Γ→∞ in (11) yields

lim
Γ→∞

Δ(Γ) = E

[
||h̃H

2 h̃1||2 − ||h̃1||2||h̃2||2
||h̃1||2

∣∣∣|||H ||| = ρ

]
< 0.

6. ILLUSTRATION

In Fig. (1), the optimal power allocation as well as the optimality
condition from Theorem 2 is shown for fixed SNR Γ over the chan-
nel norm ρ. The zero of the optimality condition corresponds to
the point from which on beamforming is optimal. This fits well to
the optimal power allocation. A higher channel norm ρ corresponds
to better channel conditions. In the scenario without short-term but
long-term CSI available at the transmitter, the beamforming optimal-
ity range is for small SNR values. If short-term CSI is available, the
beamforming optimality range is in the range of high ρ.

An explanation of the high norm behavior can be given by the
observation in [11, Section 3.2]. The probability that the channel has
rank one increases for increasing channel norm.

In Fig. (2), the gain by having channel norm information is
shown. The norm helps in scenarios where either the best user can be
chosen from a set of users [12] or if power allocation over norm real-
izations can be done, e.g. spectral power allocation. The ergodic ca-
pacity with covariance knowledge and with or without channel norm
information at the transmitter is shown over the SNR. Without norm
information, a random user is picked from a set of K = 10 users.
If norm information is available, the user with highest norm is cho-
sen. We plotted also the ergodic capacity with perfect CSI and user
selection based on the largest eigenvalue of the channel matrix as an
upper bound.

7. CONCLUSION

In this paper, the ergodic capacity achieving transmit strategy for a
single-user MIMO system with perfect CSI at the receiver and sta-
tistical CSI as well as short-term unitary invariant norm feedback is
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Fig. 1. Optimal power allocation (p1 for stream 1 and p2 for stream
2) and beamforming optimality function over channel norm ρ.
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Fig. 2. Gain by channel norm feedback 10 users, 2× 2 systems with
correlation eigenvalues λ1 = 1.8, λ2 = 0.2.

characterized. For this class of short-term norm feedback the opti-
mal beamforming vectors correspond to the eigenvectors of the long-
term CSI component. The optimal power allocation is described in
terms of the beamforming optimality range. In contrast to the com-
mon case of only statistical CSI, it turns out that the higher the chan-
nel norm, the fewer streams are optimally multiplexed.
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