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ABSTRACT

One disadvantage with current OFDM systems is, the system com-
plexity associated with FFT module, equalier, etc is almost xed and
varies little with information bit rate. In this paper, based on an in-
novative “Layered” concept in FFT algorithms, we propose a novel
OFDM system whose complexity is adaptive to the desired bit rate
and system performance by exploiting transmitter diversity. Differ-
ent diversity options in the transmitter and receiver are discussed,
and veri ed in simulations.

Index Terms— OFDM, FFT

1. INTRODUCTION

OFDM system is an attractive solution for broadband wireless com-
munications because of its anti-multipath capability and high spec-
trum ef ciency [1]. However, one problem with current OFDM sys-
tems is, system complexity (FFT module, etc) does not change adap-
tively with the desired bit rate and performance.

In OFDM, information bit rate is generally changed by using dif-
ferent modulations, coding rates, and/or frequency spreading (Same
data assigned to different subcarriers), and/or time spreading (same
data over multiple OFDM symbols) [2]. However, the physical-layer
data rate is xed, and system runs at full speed. Both transmitter and
receiver require full FFT computation - regardless of multipath con-
ditions and information bit rate. On the contrary, in CDMA systems,
spreading gain can be adaptive to data rate, and receiver can choose
the number of ngers in a Rake receiver according to the channel
condition and desired performance.

In this paper, based on an innovative “Layered” concept in FFT
algorithms, we propose a smart OFDM system whose complexity is
adaptive to the data rate and the desired system performance. In the
proposed system, the receiver has the option of combining different
number of multipath, similar to that in CDMA systems.

2. LAYERED FFT STRUCTURE

It is well known that the Divide-and-Conquer approach is the basis
of FFT algorithms [3]. Below, we recall the process of the Divide-
and-Conquer approach to calculate aN -point DFT of the signal x =
{xi}, i ∈ [0, N − 1].
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Step 1 Stack the input signal x column-wise into a P × Q matrix
X = {xp,q}, p ∈ [0, P − 1], q ∈ [0, Q − 1] with xp,q =
xqP+p and N = PQ;

Step 2 Compute the Q-point DFTs for each row of X, and yield a
newmatrix X̆ = {x̆l,q}, l = 0, 1, · · · , P−1, q = 0, 1, · · · , Q−
1 with x̆l,q =

�Q−1
m=0 xl,mW mq

Q , q ∈ [0, Q − 1], where
W mq

Q = exp(−j2πmq/Q);

Step 3 Multiply X̆ by the phase factorsW lq
N and generate a new ma-

trix V̆ = {ṽl,q} with ṽl,q = W lq
N x̆l,q;

Step 4 Compute the P -point DFTs for each column of V̆;
Step 5 Read the resultingP×Qmatrix X̃ = {x̃p,q}, p = 0, 1, · · · , P−

1, q = 0, 1, · · · , Q − 1 row-wise, and the resulting output is
the DFT of x.

Given two N -point signals x, h and their circular convolution
output y = x⊗h, we know that their DFTs have the relationship ỹ =
x̃�h̃, where⊗ and� denote the circular convolution and dot product
of two vectors, respectively. Now let us consider the relationship of
these three signals in terms of their intermediate outputs in Step 2 in
the Divide-and-Conquer approach.

If we rearrange the frequency domain samples x̃, h̃ and ỹ into
P ×Q matrices row-wise according to the reverse process of Step 5
in the Divide-and-Conquer approach, we get X̃ = {x̃q}, H̃ = {h̃q},
Ỹ = {ỹq}, q = 0, 1, · · · , Q− 1 with

x̃q = (x̃0,q, · · · , x̃p,q, · · · , x̃P−1,q)
T , x̃p,q = x̃pQ+q, (1)

h̃q = (h̃0,q, · · · , h̃p,q, · · · , h̃P−1,q)
T , h̃p,q = h̃pQ+q, (2)

ỹq = (ỹ0,q, · · · , ỹp,q, · · · , ỹP−1,q)
T , ỹp,q = ỹpQ+q, (3)

p = 0, 1, · · · , P − 1.
Since ỹq = x̃q � h̃q , it is straightforward to see that for any

q ∈ [0, Q− 1], the vector {y̆l,qW
lq
N } equals to the length-P circular

convolution of the two vectors {x̆l,qW
lq
N } and {h̆l,qW

lq
N }, where

l = 0, 1, · · · , P − 1, that is

y̆l,qW
lq
N =

P−1�

m=0

x̆m,qW
mq
N h̆((l−m))P ,qW

q((l−m))P
N , (4)

where ((l−m))P denotes the index l−m modulo P . Thus for any
q ∈ [0, Q− 1], we have

y̆l,q =

P−1�

m=0

x̆m,qh̆((l−m))P ,qW
q(m−l)
N W

q((l−m))P
N (5)

=

l�

m=0

x̆m,qh̆(l−m),q +

P−1�

m=l+1

x̆m,qh̆(P+l−m),qW
q
Q, (6)
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where l = 0, 1, · · · , P − 1. This establishes the relationship of
the intermediate outputs in the Divide-and-Conquer approach. The
equation array can also be expressed in matrix form. Denote

y̆q = (y̆0,q, y̆1,q, y̆2,q, · · · , y̆P−1,q)
T , (7)

x̆q = (x̆0,q, x̆1,q, x̆2,q, · · · , x̆P−1,q)
T , (8)

H̆q =

�
�������

h̆0,q W q
Qh̆P−1,q · · · W q

Qh̆1,q

h̆1,q h̆0,q · · · W q
Qh̆2,q

h̆2,q h̆1,q · · · W q
Qh̆3,q

...
...

. . .
...

h̆P−1,q h̆P−2,q · · · h̆0,q

�
�������

, (9)

we have

y̆q = H̆q x̆q, (10)

for q = 0, 1, · · · , Q− 1.
The Divide-and-Conquer approach and the new relationship given

in (10) motivates the new concept of Layered FFT Structure. In prin-
ciple, we can design systems by exploiting the data in any step in
the Divide-and-Conquer approach. Particularly, if we design OFDM
systems by letting the inputs be the intermediate outputs x̆q as shown
in (10), we can achieve multiple advantages, including system com-
plexity adaptive to the desired data rate and system performance.

3. EXEMPLIFIED SYSTEM STRUCTURE

The proposed complexity adaptive OFDM system will be exempli-
ed with P = 2 andQ = N/2. Extension to any P equal to a power
of 2 is straightforward.

The structure of the proposed system is shown in Fig. 1. The
N input symbols are divided into two streams, represented by s̆0
and s̆1, each containing N/2 symbols. An N/2-point IFFT is then
applied for each of them, yielding two time domain vectors s0 =
(s0,0, s0,1, · · · , s0,N/2−1) and s1 = (s1,0, s1,1, · · · , s1,N/2−1). These
outputs are then interleaved and parallel-to-serial converted to gen-
erate x = (s0,0, s1,0, s0,1, s1,1, · · · , s0,N/2−1, s1,N/2−1). A cyclic-
pre x (CP) or Zero-padded-pre x (ZP) is then appended to x. The
output is de ned as a frame. Comparing it with the Divide-and-
Conquer algorithm, we can see that this process actually corresponds
to Step 1 and 2 in the latter in an reverse order. Thus s̆0, s̆1 and x̆q ,
as de ned in (8), are associated by

x̆q = (s̆0,q, s̆1,q)
T . (11)

According to (10), if we know y̆q , x̆q can then be estimated based
on previously estimated channel matrix. The computation of y̆q is
straightforward as y̆q is just the Step 2 output of the received time
domain signal y in the Divide-and-Conquer approach. As shown in
Fig. 1, after removing CP or processing ZP, the received signal y =
(y0, y1, · · · , yN−1) is divided into two streams y0 = (y0, y2, · · · , yN−2)
and y1 = (y1, y3, · · · , yN−1). AnN/2-point FFT is then applied to
each of them. Then y̆q = (y̆0,q, y̆1,q)

T is formed by collecting the
q-th coef cient from each FFT output.

For P = 2, (10) becomes

y̆q =

�
h̆0,q W q

Qh̆1,q

h̆1,q h̆0,q

�
x̆q + n̆q, (12)

where n̆q is the noise vector.

Fig. 1. Simpli ed system structure of the proposed OFDM system.

The x̆q in (12) can be solved by various algorithms, for example,
zero-forcing (ZF), iterative receiver and maximal likelihood detector.
The system structure as demonstrated in Fig. 1 also has some attrac-
tive properties for a full speed transmission, for example, slightly
reduced Peak-to-average power ratio (PAPR) and more exibility in
the receiver design. Similar systems are also proposed and discussed
in [4] and [5]. However, the focus of this paper is on the design of
complexity and performance adaptive OFDM systems by exploiting
transmitter diversity (Tx-diversity) based on the proposed structure.
In such systems, when the full data rate is determined, several basic
sub- data rates are achieved by transmitter diversity.

Now if we let x̆q convey only one symbol, that is, s̆1,q = f(s̆0,q)
and f(s) is a determined function of s, frequency diversity can be
achieved. The receiver can have variable complexity according to
the desired performance.

3.1. Receiver Options

When s̆1,q = f(s̆0,q), three types of diversity schemes are feasible:
Maximal ratio combining (MRC), Equal gain Combining (EGC) and
Selective Combining (SLC). A simpli ed system with these diver-
sity options is shown in Fig. 2.

Fig. 2. System structure with reduced complexity and different di-
versity options.
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3.1.1. MRC

MRC maximizes the signal to noise ratio of each symbol. It com-
putes two estimates of s̆0,q from y̆0,q and y̆1,q , respectively, then uses
two optimal weights to combine them and outputs the nal estimate.
When f(s̆0,q) is a linear function of s̆0,q , for example, s̆1,q = cs̆0,q

and c is a constant, MRC estimator becomes

s̆0,q =
(h̆0,q + c W q

Qh̆1,q)
∗y̆0,q + (h̆1,q + c h̆0,q)

∗y̆1,q

|h̆0,q + c W q
Qh̆1,q|2 + |h̆1,q + c h̆0,q|2

, (13)

where ∗ denotes the conjugation operator.
The MRC estimator involves 2 N/2-point FFT and 3N/2 mul-

tiplications for one frame.

3.1.2. EGC

EGC uses two identical weights to combine the two estimates. For
s̆1,q = cs̆0,q , EGC estimator becomes

s̆0,q =
y̆0,q + y̆1,q

(1 + c)h̆0,q + (1 + c W q
Q)h̆1,q

. (14)

The summation of y̆0,q and y̆1,q can be shifted to the place be-
fore the N/2-point FFT operation because FFT is a linear operation
and y̆0,q + y̆1,q = FN/2(q, :)(y0 + y1)

T . Thus only one N/2-point
FFT is required in EGC.

In terms of performance, EGC is inferior to MRC , and theoret-
ically, 3dB better than SLC.

3.1.3. SLC

SC simply chooses one between y0 and y1 to do estimation in one
frame. The choice usually depends on the value of channel coef -
cients. Thus SC enables the receiver to operate at half sampling rate,
and requires one N/2-point FFT.

3.2. Transmitter Inputs

When designing the function f(s), several factors need to be con-
sidered, including transmitter and/or receiver complexity reduction,
PAPR reduction, and receiver performance. For transmitter com-
plexity reduction, a common rule is that f(s) is chosen such that
only one N/2-point complex IFFT needs to be implemented in the
transmitter. Below, we give some examples and highlight that inputs
have impact on the diversity performance.

3.2.1. Inputs Derived from general OFDM

From the structure of H̆q in (9), we can see that, H̆q is actually a
circulant matrix and can be diagonalized as

Dq = FP Φ−1
q H̆qΦqFH

P , (15)

where Φq is a diagonal matrix

Φq = diag(1, W−q
N , W−2q

N , · · · , W
−(P−1)q
N ), (16)

FP is the P -point DFT matrix, andH denotes the Hermitian conju-
gate.

Left multiplying FP Φ−1
q to y̆q , we get

FP Φ−1
q y̆q = FP Φ−1

q H̆q x̆q

= DqFP Φ−1
q x̆q. (17)

From (17), we can derive the following relationship according
to the Divide-and-Conquer approach

ỹq = FP Φ−1
q y̆q; (18)

x̃q = FP Φ−1
q x̆q; (19)

diag(h̃q) = Dq. (20)

Using (19), any input method for frequency diversity in general
OFDM systems can be converted to the new system proposed in this
paper. Take the frequency diversity approach in Multiband OFDM
[2] as an example, where each input and its conjugate are spaced at
N/2 subcarriers, x̃q = x̃(N/2 + q)∗. According to (19), the input
in the proposed system becomes

�
s̆0,q

s̆1,q

�
=

�
1 0
0 W−q

N

��
1 1
1 −1

��
x̃q

x̃∗q

�

=

�
Re(x̃q)

j W−q
N Im(x̃q)

�
, (21)

where q = 0, 1, · · · , N/2 − 1, Re and Im denotes to take the real
and imaginary part, respectively.

With this input option, the transmitter can be implemented with
2 realN/2-point IFFTs, however, the diversity scheme derived from
(12) is not applicable directly. Instead, (17) needs to be formed from
the received signal, yielding

�
1 W−q

N

1 −W−q
N

�
ỹq =

�
h̆0,q + W q

Qh̆1,q 0

0 h̆0,q −W q
Qh̆1,q

��
x̃q

x̃∗q

�
.

(22)

This requires N extra complex multiplications in the receiver.
However, the diversity performance is superior as to be seen below.

3.2.2. Linear function f(s) = c s

A simple and ef cient input con guration is to let f(s) be a linear
function, s̆1,q = c s̆0,q . Different values of c have different impact
on the system. Two examples are c = 0 and c = 1. In both cases,
only one complex N/2-point IFFT is needed in the transmitter, and
the diversity schemes discussed in Section 3.1 apply directly. How-
ever, performance with MRC diversity is different.

When c is a constant, the performance of MRC combining de-
pends on the denominator γ = |h̆0,q +c W q

Qh̆1,q|2+ |h̆1,q +c h̆0,q|2
in (13). Fig. 3 gives geometrical illustration of MRC combining for
for c = 0 and c = 1. Intuitively, we can see that when c = 1, γ
varies largely with q and the angle between the two channel coef -
cients h̆0,q and h̆1,q . This is not the property that MRC combining
prefers. Comparatively, when c = 0, γ remains stable and only de-
pends on the magnitude of the channel coef cients. Actually, from
the “Parallelogram law”, we can get

|h̆0,q|2 + |h̆1,q|2 = |h̆0,q|2 + |W q
Qh̆1,q|2

= |h̆0,q + W q
Qh̆1,q|2 + |h̆0,q −W q

Qh̆1,q|2, (23)

which shows the diversity gain with c = 0 equals to that obtained in
(22). However, this input design increases the transmitter’s PAPR,
compared to c = 1.

The value of c can also be chosen by optimizing power loading
between s̆0 and s̆1 when channel is known.
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(b)

h1,q

W q
Qh1,q

h0,q

-
+

W q
Qh1,qh0,q +

W q
Qh1,qh0,q

h0,q h1,q

(a) h0,q

h1,q W q
Qh1,q

Fig. 3. Geometrical illustration of MRC combining for different in-
puts.

3.3. Extensions and Summations

According to the desired data rate, the systems in Fig. 1 and Fig. 2
can be extended to P = 4, and theoretically, any value equivalent to
a power of 2. Other base sub- data rates can then be formed. Thus
we can realize complexity adaptive OFDM systems where the lower
the data rate, the lower the complexity and the larger the diversity. A
complete data-rate set can be formed as follows.

• Determine the system structure in the full data rate case;
• Form several base sub- data rates by applying the transmitter
diversity scheme discussed above;

• Form Intermediate data rates by changing coding rate and/or
modulation based on the base sub- data rates.

One concern with this system is how to justify its performance,
compared with changing modulations and codings. Intuitively, per-
formance difference should depend on SNR and channel fading be-
cause they deal with different problems. Modulation deals with
AWGN, Coding deals with AWGN and fading, and frequency diver-
sity scheme mainly deals with fading. Thus for deep fading chan-
nels, this scheme may surplus the coding or modulation reduction
approach (in higher SNR case). This is veri ed by the following
simulation results.

4. SIMULATIONS

We show some simulation results with N = 256 and P = 2 in this
section. Diversity schemes with c = 0 and c = 1 are simulated, and
compared with the frequency diversity scheme in multiband OFDM.
The CM2 channel model from IEEE802.15.3a is adopted. The data
is encoded with 1/2-rate convolutional code and decoded with the
Viterbi algorithm. In SLC, output is chosen from the branch which
has a larger summation of channel power per package.

Due to the page limit, we can only present one gure here, show-
ing the bit error rate (BER) performance for 16QAM without diver-
sity and 64QAM with diversity. In Fig. 4, SOFDM denotes the pro-
posed system shown in Fig.1, G-OFDM denotes the general OFDM
system. The two dashed curves represent the performance for no-Tx-
diversity, both SOFDM and G-OFDM are equalized with ZF equal-
izer. There is about 1dB difference between SOFDM and G-OFDM
due to the noise enhancement and error propagation in SOFDM as-
sociated with simple ZF equalizer. Other solid curves illustrate the
BER for Tx-diversity with P = 2 and c = 1. As discussed in Sec-
tion 3.2, the BER performance of G-OFDM is about 1dB better than

SOFDM, using their respective inputs. However, SOFDM provides
reduced complexity and exible receiver options.

Comparing the performance between Tx-diversity and no-diversity,
we can observe that the diversity scheme in SOFDM achieves better
performance than the no-diversity scheme, while the former’s data
rate is 1.5 times of the latter’s. The performance difference increases
with the SNR, which justi es the intuitive explanation of the roles of
modulation, coding and diversity in combating noise and fading.

Fig. 4. Coded BER Performance for 16QAM without diversity and
64QAM with diversity.

5. CONCLUSIONS

In this paper, we proposed complexity adaptive OFDM systems where
system complexity is adaptive to the data rate and desired perfor-
mance by exploiting Tx-diversity. Inputs can be designed to meet
different requirements. Simulation results show that in a fading en-
vironment, the proposed Tx-diversity scheme could achieve better
performance than the no-Tx-diversity scheme with lower order mod-
ulation at similar data rates. .
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