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ABSTRACT

Selected mapping (SLM) is a distortionless crest factor reduc-
tion (CFR) method for orthogonal frequency division multi-
plexing (OFDM) transmission. With SLM, it is possible to
reduce the peak-to-average power ratio (PAR) of an OFDM
symbol by several decibels. In this paper, we propose a method
for SLM phase sequence detection that does not require side
information transmission. We refer to this method as magnitude-
scaled SLM, in the sense that it scales the frequency-domain
power profile of the OFDM symbol with an envelope func-
tion from a set of pre-determined envelope functions. From
the envelope of the received symbol, the receiver can detect
which envelope and thus which phase sequence was used in
the transmission. Also presented in this paper are the theo-
retical characterizations of the detection error rate (DER) and
symbol error rate (SER) in a magnitude-scaled SLM system.
Compared with ordinary OFDM without CFR, magnitude-
scaled SLM can achieve an order of magnitude SER improve-
ment in a peak-power-limited channel.

Index Terms— Orthogonal frequency division multiplex-
ing, selected mapping, crest factor reduction, peak-to-average
power ratio

1. INTRODUCTION

Orthogonal frequency division multiplexing (OFDM) is an at-
tractive multi-carrier transmission scheme due to its immu-
nity to inter-symbol interference and robustness to multi-path
fading. It has been adopted by several communications stan-
dards, such as digital audio broadcasting (DAB), digital video
broadcasting (DVB), wireless LAN and wireless MAN. How-
ever, one major problem associated with OFDM is its high
peak-to-average power ratio (PAR) or crest factor (CF). When
a high-PAR signal, such as OFDM, is passed through a high-
power amplifier (HPA), the HPA will either operate with a
large back-off resulting in very poor power efficiency or oper-
ate in its non-linear region, which will generate both in-band
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distortion and out-of-band spectral regrowth in the transmit-
ted signal. Hence, crest factor reduction (CFR) of the OFDM
signal is often necessary.

Selected mapping (SLM) is a distortionless CFR method.
It selects an (alternative) representation signal with the min-
imum PAR from a set of equivalent representations each of
which is related to the original OFDM sequence in the fre-
quency domain through a sequence of phase rotations on in-
dividual sub-carriers [1]. The receiver must know the index
of the selected sequence to retrieve the corresponding phase
vector for the phase de-rotation. Explicit side-information
transmission will undesirably reduce the data rate; therefore
a blind SLM (BSLM) scheme is preferred. Existing BSLM
methods include maximum likelihood (ML) detection of the
data symbols [2], maximum a posteriori (MAP) detection of
the phase sequence [3], phase sequence detection based on
pilot subcarriers [4], and phase sequence detection based on
constellation shifts [5].

The magnitude-scaled SLM scheme proposed in this pa-
per is an extension of the idea presented in [6], which only
worked for constant magnitude (PSK) constellations. The
scheme proposed in this paper is applicable regardless of the
constellation type. Basically, magnitude-scaled SLM uses a
pre-determined set of envelope scaling functions to scale the
OFDM symbol, and the amplitude scaling and the phase ro-
tation sequences are linked by a common index. The receiver
can then use a specially designed metric to recover the ampli-
tude and phase sequence (index) used in the transmission.

Notations: Upper case and lower case bold face letters
represent matrices and column vectors respectively; super-
script T andH stand for the transpose and the Hermitian trans-
pose, respectively; E[·] is the expectation operator; ‖x‖n is
the �n-norm of x; |x| is a vector that is the element-wise
magnitude of x; |A| is the cardinality of set A; Dx is a di-
agonal matrix with vector x on the diagonal; the N ×N dis-
crete Fourier transform (DFT) matrix is denoted by [Q]n,k =
N−1/2 exp(j2π(n− 1)(k − 1)/N).

2. OFDMMODEL

In OFDM, individual subcarriers in the frequency-domain are
modulated with constellation points, transformed into the time-
domain and transmitted with a cyclic prefix. For PAR anal-
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ysis, the cyclic prefix can be ignored since it has no effect
of the symbol PAR. Let the frequency-domain vector of con-
stellation points be x = [x1, x2, ..., xN−1, xN ]

T
, where xk

is drawn from a R-point constellation and the power in x is
normalized so that E

[‖x‖22
]

= N . Using the inverse discrete
Fourier transform, the time-domain symbol is y =

√EyQHx,
where Ey is the symbol energy of y. The PAR of the trans-
mitted signal is defined by

PAR{y} =
‖y‖2∞

Ey . (1)

For transmission through a peak-power-limited channel it is
desirable to make the PAR as low as possible. The received
baseband frequency-domain signal after synchronization is
z =

√EyDhx + n, where Dh is a diagonal matrix with di-
agonal elements from the channel frequency response vec-
tor h and n is (complex-valued) white Gaussian noise with
zero mean and variance σ2n. Finally, assuming perfect chan-
nel state information, the estimated transmitted symbol is x̂ �

D−1
h
z/

√Ey .

3. MAGNITUDE-SCALED SLM

In the conventional SLM, M complex-valued vectors s(m),
1 ≤ m ≤ M , are multiplied with x prior to transmission, to
generate x(m) � Ds(m)x. The candidate signalQHx(m) that
produces the lowest PAR among the M possible candidate
signals is selected for transmission. Every element in s(m)

has unit magnitude, i.e., |s(m)| = 1N×1.
In contrast to conventional SLM, magnitude-scaled SLM

does not impose the constraint |s(m)| = 1N×1. Specifically,
the complex-valued scaling vectors are of the form

[s(m)]k � p
(m)
k ejφ

(m)
k . (2)

The distribution of the phase angles φ(m)
k is chosen so that

E[ejφ
(m)
k ] = 0 which is the condition required for SLM to

achieve maximum CFR [7]. This condition is satisfied for ex-
ample, when φ(m)

k is i.i.d. uniformly distributed in {0, 2π}.
Define

[
p(m)

]
k

� p
(m)
k , where p(m) is chosen to be a scaled

and shifted column of a pseudo-random matrix that has el-
ements of either 1 or −1. Denote column i of the N × N
pseudo-random matrix by w(i), and define sets of indices
K(i)
1 =

{
k | [w(i)]k = 1

}
, K(i)
−1 =

{
k | [w(i)]k = −1

}
. One

example of w(i) is a column of the Hadamard matrix, which
is called a Walsh sequence. For example, given the 8-element
Walsh sequence, w(3) � [1, 1,−1,−1, 1, 1,−1,−1]T , we
have K(3)

1 = {1, 2, 5, 6} and K(3)
−1 = {3, 4, 7, 8}. Walsh se-

quences have the nice property that for 1 < i ≤ N , |K(i)
1 | =

|K(i)
−1|. The magnitude sequence is chosen so that p(m)

k =
√
β

when k ∈ K(m+1)
1 and p(m)

k =
√

2 − β when k ∈ K(m+1)
−1 .

We require 1 < β < 2, and thus 0 < 2 − β < 1. Therefore,
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Fig. 1. BSLM vs. SLM CCDF curves for OFDM with 16QAM
modulation.

depending on the sub-carrier location k, the power on 50% of
the sub-carriers is scaled down to 2 − β, whereas the power
on the other 50% of the sub-carriers is scaled up to β; the
average power remains the same.

Now themth time-domain candidate signal is

y(m) =
√EyQHx(m) (3)

If p(m) is chosen according to the Walsh sequence, we can
guarantee that E

[‖y(m)‖22
]

= NEy, ∀m. The index of the
transmitted candidate signal y(m̄) is chosen so that

m̄ � arg min
1≤m≤M

∥∥∥y(m)
∥∥∥
∞
. (4)

The PAR reduction capability of BSLM is evaluated by
the complementary cumulative distribution function (CCDF)
of the PAR values after amplitude scalings and phase rota-
tions. The results are compared to the theoretical and empir-
ical CCDFs for the conventional SLM (the theoretical CCDF
expression can be found in [1]). Four cases are simulated
with different combinations of N and M (see Fig. 1). The
amplitude-scaling factor was set to β = 1.2, the constella-

tion used was 16QAM and the phase rotation sequence ejφ
(m)
k

was i.i.d. ±1 with equal probability. From Fig. 1, empirical
CCDF of the PAR from our proposed BSLM algorithm and
that from the conventional SLM were very close, and they
both agreed with the theoretical CCDF very well. Hence,
magnitude-scaled SLM is shown to provide the same PAR
reduction capability as the conventional SLM.

The received frequency-domain SLM symbol is z =√EyDhx
(m̄) + n. Assuming perfect channel state informa-

tion, we can write

x̂(m̄) �
D−1
h
z√Ey

= x(m̄) +
D−1
h
n√Ey
. (5)
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Finally, in order to detect m̄ blindly, we can createM receive
metrics, one for each possible scaling sequence. The mth

metric is

G(m) =
∑

k∈K
(m+1)
1

∣∣∣[x̂(m̄)]k

∣∣∣2 −
∑

k∈K
(m+1)
−1

∣∣∣[x̂(m̄)]k

∣∣∣2 (6)

It may also be convenient to express the detection metrics as
a column vector⎡

⎢⎢⎢⎣
G(1)

G(2)

...
G(M)

⎤
⎥⎥⎥⎦ =

[
w(2) w(3) . . . w(M+1)

]T ∣∣∣x̂(m̄)
∣∣∣2 , (7)

where | · |2 is the element-wise magnitude squared value of a
vector. Notice thatE[G(m̄)] = NEy(β−1) andE[G(m �=m̄)] =
0. Thus, we can estimate m̄ with

ˆ̄m � arg max
1≤m≤M

G(m). (8)

With ˆ̄m, the estimated symbol becomes x̂ = D−1
s(

ˆ̄m) x̂
(m̄).

Magnitude-scaled SLM is designed to operate in peak-
power-limited channels. Thus, in order to provide a fair com-
parison of the proposed scheme to traditional OFDM in terms
of SER, we must assume a clipping channel. Accordingly,
we adopt the linear block scaling OFDM architecture pro-
posed in [8]. In [8], it was demonstrated that by using a linear
block scaling architecture the transmitted signal power is ac-
tually 1/PAR{y}, thus the SERs of competing schemes are
mostly aptly compared using the peak SNR (PSNR), where
PSNR � 1/PAR{y}σ2n. Assuming perfect detection of
m̄, a tight upper bound on the SER when QAM is used in an
AWGN channel is

ps| ˆ̄m=m̄ ≤ 2Erfc

[√
3rβPSNR

2(R− 1)

]
+

2Erfc

[√
3r(2 − β)PSNR

2(R− 1)

]
(9)

whereR is the constellation size and r � log2R [9]. Further-
more, the detection error rate (DER) in an AWGN channel
can be approximated by

Pr
[

ˆ̄m �= m̄
]

= 1 −
(

1 − 1

2
Erfc

[
(β − 1)

√
N

2σPAR{y}

])M−1

(10)

where σ2 = σ4n + 2σ2n + E2
yσ

2
|x|2 (see the Appendix for de-

tails). The validity of this approximation is verified in Fig.
2. The plot shows that the expression in (10) matches very
closely with the empirical DER obtained from Monte Carlo
simulations.
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Fig. 2. Simulated and theoretical DER for QPSK, where SNR =
Ey/σ
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Finally, the SER of the proposed system can be quantified
through SER = ps| ˆ̄m=m̄+DER(1−1/R−ps| ˆ̄m=m̄), where
DER is defined in (10). In this case, SER depends on the ran-
dom variable PAR{y}. Obtaining the most precise estimate
of the SER requires integrating SER over the probability
density function of PAR{y} [10]. However, it is possible to
use Jensen’s inequality in conjunction withE[PAR{y}] from
[10] to provide a tight closed form lower bound on SER.

In order to realize the full potential of the proposed scheme,
it is necessary to optimize β andM , for a given signal power,
Ey , channel noise, σ2n and constellation size R to minimize
the SER. Because the minimization is difficult to carry out
analytically, we instead performed the optimization numeri-
cally. Fig. 3 is a plot of the optimal values of β versus log2N .
As expected, larger values for N lead to decreases in β. Fi-
nally, in Fig. 4 the SER for magnitude-scaled OFDMwith op-
timized β is plotted along with conventional OFDM. At 20dB
of PSNR, the proposed magnitude-scale SLM scheme (with
M = 20) outperforms conventional OFDM by a factor of 10
in terms of SER.

4. CONCLUSIONS

In this paper we proposed magnitude-scaled SLM as a CFR
method that obviates the need for SLM side-information trans-
mission. The proposed scheme uses envelope functions de-
rived from Walsh sequences to shape the frequency-domain
power profile of the OFDM symbol. At the receiver, en-
velope detection is used in conjunction with a specially de-
signed metric to determine the transmitted SLM phase se-
quence. To verify the utility of magnitude-scaled SLM, we
derived a closed-form bound for the SER and compared it
to the SER of conventional OFDM. In the linear block scal-
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Table 1. Power variances for various constellation sizes

R 4 16 64 256 ∞

σ2|x|2 0 0.320 0.382 0.396 0.400

ing channel corrupted by AWGN, the magnitude-scaled SLM
signals yielded more than 1dB PSNR improvement over the
conventional OFDM.

5. APPENDIX

By applying the Central Limit Theorem, we can approximate
G(m̄) and G(m �=m̄) with Gaussian random variables so that
G(m̄) ∼ N (

NEy(β − 1)/PAR{y}, Nσ2) and G(m �=m̄) ∼
N (

0, Nσ2
)
, where σ2 = σ4n+2σ2n+E2

yσ
2
|x|2 . Values of σ

2
|x|2

are tabulated in Table 1.
WhenM = 2, we have

Pr
[

ˆ̄m �= m̄
]

= Pr
[
G(m �=m̄) > G(m̄)

]
(11)

=
1

2
Erfc

[
Ey(β − 1)

√
N

2σPAR{y}

]
. (12)

ForM > 2, assuming that G(m �=m̄) is independent for differ-
entm, we can obtain

Pr
[

ˆ̄m = m̄
]

=
∏
m �=m̄

{
1 − Pr

[
G(m) > G(m̄)

]}
. (13)

Combining (12) and (13) gives rise to (10).
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