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Abstract—A systematic theory is introduced for nding the derivatives
of complex-valued matrix functions with respect to a complex-valued
matrix variable and the complex conjugate of this variable. In the
framework introduced, the differential of the complex-valued matrix
function is used to identify the derivatives of this function. Matrix
differentiation results are developed for use in signal processing and
communications applications. Several other examples are given.
Index Terms: Adaptive lters, Optimization methods, Gradient

methods, Linear algebra
I. INTRODUCTION

In many engineering problems, the unknown parameters are
complex-valued vectors and matrices and, often, the task of the
system designer is to nd the values of these complex parameters
which optimize a chosen criterion. This problem is of particular
interest in recent signal processing for communications applications
where the optimization of complex matrices such as transmit MIMO
precoders, receiver lters, equalizer, or transmit covariance matrix
have become extremely common. Often the cost function represents
a system performance metric such as the channel capacity, SNR, or
error rate. When a scalar real-valued function depends on a complex-
valued matrix parameter, the necessary conditions for optimality can
of course be found by either setting the derivative of the function
with respect to the complex-valued matrix parameter or its complex
conjugate to a zero vector/matrix. Differentiation results are well-
known for certain classes of functions, e.g., quadratic functions.
However when the form taken by the cost-function is too intricate,
the researcher is left with guess work, trying to arrive at an expression
for the derivative.

This paper provides tools for nding derivatives in a systematic
way that will help students and researchers alike. The tools can also
be used to determine the direction of maximum rate of change of a
real-valued scalar function, with respect to the complex-valued matrix
parameter, in view of use in iterative algorithms. Our results offer a
generalization of a well-known results for scalar functions of vector
variables. The main contribution of this paper is to generalize the
real-valued derivatives given in [1] to the complex-valued case. In
particular, we propose to do so by nding the derivatives by the
so-called complex differentials of the functions. In this paper, it
is assumed that the functions are differentiable with respect to the
complex-valued parameter matrix and its complex conjugate, and it
will be seen that these two parameter matrices should be treated as
independent when nding the derivatives, as is classical for scalar
variables.

The problem at hand has been treated for real-valued matrix
variables in [1], [2], [3], [4], [5]. Four additional references that give
a brief treatment of the case of real-valued scalar functions which
depend complex-valued vectors are Appendix B of [6], Appendix 2.B
in [7] and the article [8]. The article [9] serves as an introduction to
this area for complex-valued scalar functions with complex-valued
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argument vectors. Results on complex differentiation theory is given
in [10], [11] for differentiation with respect to complex-valued scalars
and vectors, however, the more general matrix case is not consid-
ered. In [12], they nd derivatives of scalar functions with respect
to complex-valued matrices, however, that paper could have been
considerably simpli ed if the proposed theory was utilized. Examples
of problems where the unknown matrix is a complex-valued matrix
are wide ranging including precoding of MIMO systems [13], linear
equalization design [14], array signal processing [15] to cite a few.

Some of the most relevant applications to signal and communica-
tion problems are presented here, with key results being highlighted
and other illustrative examples being listed in tables. For an extended
version, see [16], [17].

The rest of this paper is organized as follows: In Section II, the
complex differential is introduced, and based on this differential,
the de nition of the derivatives of complex-valued matrix function
with respect to the complex-valued matrix argument and its complex
conjugate is given in Section III. The key procedure showing how the
derivatives can be found from the differential of a function is also
presented in Section III. Section IV contains the important results
of equivalent conditions for nding stationary points and in which
direction the function has the maximum rate of change. In Section V,
several key results are placed in tables and some results are derived
for various cases with high relevance for signal processing and
communication problems. Section VII contains some conclusions.
Notation: Scalar quantities (variables z or functions f ) are denoted

by lowercase symbols, vector quantities (variables z or functions f )
are denoted by lowercase boldface symbols, and matrix quantities
(variables Z or functions F ) are denoted by capital boldface symbols.
It is assumed that all the functions depend on a complex variable Z
and the complex conjugate of the same variable Z∗. Furthermore,
it is assumed that all the elements of Z are independent such that
they can be freely chosen. Let j =

√−1, and let the real Re{·} and
imaginary Im{·} operators return the real and imaginary parts of the
input matrix, respectively. If Z ∈ C

N×Q is a complex-valued1 ma-
trix, then Z = Re {Z}+ j Im {Z}, and Z∗ = Re {Z}− j Im {Z},
where Re {Z} ∈ R

N×Q, Im {Z} ∈ R
N×Q, and the operator (·)∗

denotes complex conjugate of the matrix it is applied to.
II. COMPLEX DIFFERENTIALS

The differential has the same size as the matrix it is applied to.
The differential can be found component-wise, that is, (dZ)k,l =
d (Z)k,l. A procedure that can often be used for nding the differen-
tials of a complex-valued matrix function2 F (Z0, Z1) is to calculate
the difference

F (Z0 + dZ0, Z1 + dZ1)− F (Z0, Z1) = First-order(dZ0, dZ1)

+ Higher-order(dZ0, dZ1), (1)

where First-order(·, ·) contains the terms that depend on either
dZ0 or dZ1 of the rst order, and Higher-order(·, ·) denotes

1
R and C are the sets of the real and complex numbers, respectively.

2The indexes are chosen to start with 0 everywhere in this article.
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TABLE I
IMPORTANT RESULTS FOR COMPLEX DIFFERENTIALS.

dA = 0 d(aZ) = adZ d(AZB) = A(dZ)B d(Z0 + Z1) = dZ0 + dZ1
d Tr {Z} = Tr {dZ} d(Z0Z1) = (dZ0)Z1 + Z0(dZ1) d(Z0 ⊗ Z1) = (dZ0) ⊗ Z1 + Z0 ⊗ (dZ1) d Tr{exp(Z)} = Tr{exp(Z)dZ}

dZ∗ = (dZ)∗ dZH = (dZ)H d det(Z) = det(Z) Tr
{

Z−1dZ
}

d ln(det(Z)) = Tr
{

Z−1dZ
}

d reshape(Z) = reshape(dZ) d(Z0 � Z1) = (dZ0) � Z1 + Z0 � (dZ1) dZ−1 = −Z−1(dZ)Z−1 d Tr{Zn} = n Tr{Zn−1dZ}

the terms that depend on the higher order terms of dZ0 and
dZ1. The differential is then given by First-order(·, ·), i.e., the
rst order term of F (Z0 + dZ0, Z1 + dZ1) − F (Z0, Z1). Ob-

serve that lim
(dZ0,dZ1)→0

Higher-order(dZ0, dZ1)

‖(dZ0, dZ1)‖ = 0. Therefore,

for suf ciently small (dZ0, dZ1), we can write the rst order
(af ne) approximation F (Z0 + dZ0, Z1 + dZ1) ≈ F (Z0, Z1) +
First-order(dZ0, dZ1). As an example, let F (Z0, Z1) = Z0Z1.
Then the difference in (1) can be developed and readily expressed
as: F (Z0+dZ0, Z1+dZ1)−F (Z0, Z1) = Z0dZ1+(dZ0)Z1+
(dZ0)(dZ1). The differential of Z0Z1 can then be identi ed as all
the rst-order terms on either dZ0 or dZ1 as dZ0Z1 = Z0dZ1 +
(dZ0)Z1.

Let ⊗ and � denote the Kronecker and Hadamard product [18],
respectively. Some important rules on complex differentials are listed
in Table I, assuming A, B, and a to be constants, n ∈ {1, 2, 3, . . .},
and Z , Z0, and Z1 to be complex-valued matrix variables. The vec-
torization operator vec(·) stacks the columns vectors of the argument
matrix into a long column vector in chronological order [18]. The
differentiation rule of the reshaping operator reshape(·) in Table I
is valid for any linear reshaping3 operator reshape(·) of the matrix,
and examples of such operators are the transpose (·)T or vec(·).
Some of the basic differential results in Table I can be derived by
means of (1), and others can be derived by generalizing some of the
results found in [1], [4] to the complex differential case. From Table I,
the following four equalities follows dZ = d Re {Z}+ jd Im {Z},
dZ∗ = d Re {Z} − jd Im {Z}, d Re {Z} = 1

2
(dZ + dZ∗), and

d Im {Z} = 1
2j

(dZ − dZ∗).
The following lemma is used to identify the rst-order derivatives

later in the article. The real variables Re {Z} and Im {Z} are
independent of each other and hence are their differentials. Although
the complex variables Z and Z∗ are related, their differentials are
linearly independent in the following way:
Lemma 1: Let Z ∈ C

N×Q and let Ai ∈ C
M×NQ. If

A0d vec(Z) + A1d vec(Z∗) = 0M×1 for all dZ ∈ C
N×Q, then

Ai = 0M×NQ for i ∈ {0, 1}.
Proof: See [17].

III. COMPUTATION OF THE DERIVATIVE WITH RESPECT TO

COMPLEX-VALUED MATRICES

The most general de nition of the derivative is given here from
which the de nitions for less general cases follow. In this article,
it is assumed that all the elements of the matrix Z are linearly
independent.
De nition 1 (Derivatives by Differential): Let F : C

N×Q ×
C

N×Q → C
M×P . Then the derivative of the matrix function

F (Z, Z∗) ∈ C
M×P with respect to Z ∈ C

N×Q is denoted DZ F ,
and the derivative of the matrix function F (Z, Z∗) ∈ C

M×P with
respect to Z∗ ∈ C

N×Q is denoted DZ∗F and the size of both these
derivatives is MP × NQ. The derivatives DZ F and DZ∗F are
de ned by the following differential expression:

d vec(F ) = (DZ F ) d vec(Z) + (DZ∗F ) d vec(Z∗). (2)

3The output of the reshape operator has the same number of elements as the
input, but the shape of the output might be different, so reshape(·) performs
a reshaping of its input argument.

DZ F (Z, Z∗) and DZ∗F (Z , Z∗) are called the Jacobian matrices
of F with respect to Z and Z∗, respectively.
Remark 1: De nition 1 is a generalization of De nition 1 in [1,

p. 173] to include complex-valued matrices. In [1], several alternative
de nitions of the derivative of real-valued functions with respect to
a matrix are discussed, and it is concluded that the de nition that
matches De nition 1 is the only reasonable de nition. De nition 1 is
also a generalization of the de nition used in [9] for complex-valued
vectors to the case of complex-valued matrices.

Assume that d vec(F ) = ζ0d vec(Z) + ζ1d vec(Z∗)
where ζi ∈ C

MP×NQ, and ζ1 might be a function Z
and Z∗. To show the uniqueness of the representation in
(2), we subtract the differential in (2) from d vec(F ) =
ζ0d vec(Z)+ζ1d vec(Z∗) to get (ζ0 −DZ F (Z, Z∗)) d vec(Z)+
(ζ1 −DZ∗F (Z, Z∗)) d vec(Z∗) = 0MP×1. Using Lemma 1, it
follows that the derivative is unique.
De nition 2 (Partial Derivatives): Let f : C

N×1 × C
N×1 →

C
M×1. The partial derivatives ∂

∂zT f (z, z∗) and ∂
∂zH f (z, z∗) 4 of

size M ×N are de ned as(
∂

∂zT
f (z, z∗)

)
k,l

=
∂

∂zk
fl, (3)(

∂

∂zH
f (z, z∗)

)
k,l

=
∂

∂z∗
k

fl, (4)

where zi and fi is component number i of the vectors z and f ,
respectively.

Notice that ∂
∂zT f = Dzf and ∂

∂zH f = Dz∗f . Using the partial
derivative notation in De nition 2, the derivatives of the function
F (Z, Z∗), in De nition 1, are:

DZ F (Z , Z∗) =
∂ vec(F (Z , Z∗))

∂ vecT (Z)
, (5)

DZ∗F (Z , Z∗) =
∂ vec(F (Z , Z∗))

∂ vecT (Z∗)
. (6)

This is a generalization of the real-valued matrix variable case treated
in [1] to the complex-valued matrix variable case. (5) and (6) show
how the all the MPNQ partial derivatives of all the components
of F with respect to all the components of Z and Z∗ are arranged
when using the notation introduced in De nition 2.

Key result: Finding the derivative of the complex-valued matrix
function F with respect to the complex-valued matrices Z and Z∗

can be achieved using the following three-step procedure:

1) Compute the differential d vec(F ).
2) Manipulate the expression into the form given (2).
3) Read out the result using De nition 1.

For less general function types, a similar procedure can be used.
Chain Rule: One big advantage of the way the derivative is de ned

in De nition 1 compared to other de nitions of the derivative of
F (Z, Z∗) is that the chain rule is valid in a very simple form. The
chain rule is now formulated, and it might be very useful for nding
complicated derivatives.
Theorem 1 (Chain Rule with Differentials): Let (S0, S1) ⊆

C
N×Q × C

N×Q, and let F : S0 × S1 → C
M×P be differentiable

with respect to both its rst and second argument at an interior
point (Z, Z∗) in the set S0 × S1. Let T0 × T1 ⊆ C

M×P × C
M×P

4In this article, (·)H denotes the complex conjugate transpose.
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TABLE II
DERIVATIVES OF SCALAR-VALUED FUNCTIONS f (Z, Z∗) ∈ C

f
(
Z, Z∗) Differential df ∂

∂Z
f ∂

∂Z∗ f

Tr{Z} Tr
{

IN dZ
}

IN 0N×N
Tr{Z∗} Tr

{
IN dZ∗} 0N×N IN

Tr{AZ} Tr {AdZ} AT 0N×Q

Tr{ZH A} Tr
{

AT dZ∗
}

0N×Q A

Tr{ZA0ZT A1} Tr
{(

A0ZT A1 + AT
0 ZT AT

1
)

dZ
}

AT
1 ZAT

0 + A1ZA0 0N×Q

Tr{ZA0ZA1} Tr {(A0ZA1 + A1ZA0) dZ} AT
1 ZT AT

0 + AT
0 ZT AT

1 0N×Q

Tr{ZA0ZH A1} Tr
{

A0ZH A1dZ + AT
0 ZT AT

1 dZ∗
}

AT
1 Z∗AT

0 A1ZA0
Tr{ZA0Z∗A1} Tr

{
A0Z∗A1dZ + A1ZA0dZ∗} AT

1 ZH AT
0 AT

0 ZT AT
1

Tr{AZ−1} −Tr
{

Z−1AZ−1dZ
}

−
(

ZT
)−1

AT
(

ZT
)−1

0N×N

Tr{Zp} p Tr
{

Zp−1dZ
}

p
(

ZT
)p−1

0N×N

ln (det(A0ZA1)) Tr
{

A1 (A0ZA1)−1 A0dZ
}

AT
0

(
AT

1 ZT AT
0

)−1
AT

1 0N×Q

ln
(
det(ZZT )

)
2Tr

{
ZT

(
ZZT

)−1
dZ

}
2

(
ZZT

)−1
Z 0N×Q

ln
(
det(ZZ∗)) Tr

{
Z∗(ZZ∗)−1dZ + (ZZ∗)−1ZdZ∗

}
(ZH ZT )−1ZH ZT

(
ZH ZT

)−1

ln
(
det(ZZH )

)
Tr

{
ZH (ZZH )−1dZ + ZT

(
ZZH

)−T
dZ∗

}
(ZZH )−T Z∗

(
ZZH

)−1
Z

ln
(
det(Zp)

)
p Tr

{
Z−1dZ

}
p

(
ZT

)−1
0N×N

ln
(
det

(
P + ZZH

))
Tr

{
ZH

(
P + ZZH

)−1
dZ + ZT (P + ZZH )−T dZ∗

} (
P + ZZH

)−T
Z∗ (P + ZZH )−1Z

λ(Z)
vH
0 (dZ)u0
vH
0 u0

= Tr

{
u0vH

0
vH
0 u0

dZ

}
v∗0uT

0
vH
0 u0

0N×N

λ∗(Z)
vT
0

(
dZ∗)u∗0

vT
0 u∗0

= Tr

{
u∗0vT

0
vT
0 u∗0

dZ∗
}

0N×N
v0uH

0
vT
0 u∗0

be such that (F (Z, Z∗), F ∗(Z, Z∗)) ∈ T0 × T1 for all (Z, Z∗) ∈
S0 × S1. Assume that G : T0 × T1 → C

R×S is differentiable
at an interior point (F (Z, Z∗), F ∗(Z, Z∗)) ∈ T0 × T1. De ne
the composite function H : S0 × S1 → C

R×S by H (Z , Z∗) �
G (F (Z , Z∗), F ∗(Z, Z∗)). The derivatives DZ H and DZ∗H are
obtained through:

DZ H = (DF G)DZ F + (DF ∗G)DZ F ∗, (7)

DZ∗H = (DF G)DZ∗F + (DF ∗G)DZ∗F
∗. (8)

Proof: See [17].

IV. COMPLEX DERIVATIVES IN OPTIMIZATION THEORY

In this section, two useful theorems are presented that exploit the
theory introduced earlier. Both theorems are important when solving
practical optimization problems involving differentiation with respect
to a complex-valued matrix. These results include conditions for
nding stationary points for a real-valued scalar function dependent

on complex-valued matrices and in which direction the same type of
function has the minimum or maximum rate of change, which might
be used in the steepest decent method.

1) Stationary Points: The next theorem presents conditions for
nding stationary points of f(Z , Z∗) ∈ R.
Theorem 2: Let f : C

N×Q×C
N×Q → R. A stationary point5 of

the function f(Z, Z∗) = g(X , Y ), where g : R
N×Q×R

N×Q → R

and Z = X + jY is then found by one of the following three equiv-
alent conditions: (a) DX g(X, Y ) = 01×NQ ∧ DY g(X, Y ) =
01×NQ, (b) DZ f(Z , Z∗) = 01×NQ, or (c) DZ∗f(Z , Z∗) =
01×NQ.
Proof: See [17].
2) Direction of Extremal Rate of Change: The next theorem

states how to nd the maximum and minimum rate of change of
f(Z , Z∗) ∈ R.
Theorem 3: Let f : C

N×Q × C
N×Q → R. The directions

where the function f have the maximum and minimum rate of
change with respect to vec(Z) are given by [DZ∗f(Z, Z∗)]T and
− [DZ∗f(Z, Z∗)]T , respectively.
Proof: See [17].

5Notice that a stationary point can be a local minimum, a local maximum,
or a saddle point.

V. LINKS WITH CLASSICAL GRADIENT

For scalar-valued functions f (Z , Z∗) ∈ C, it is common to
arrange the partial derivatives ∂

∂zk,l
f and ∂

∂z∗
k,l

f in an alternative

way [1] than in the expressions DZ f (Z , Z∗) and DZ∗f (Z , Z∗).
The notation for the alternative way of organizing all the partial
derivatives is ∂

∂Z
f and ∂

∂Z∗ f . In this alternative way, the partial
derivatives of the elements of the matrix Z ∈ C

N×Q are arranged
as: (

∂

∂Z
f

)
k,l

=
∂

∂zk,l
f, (9)(

∂

∂Z∗ f

)
k,l

=
∂

∂z∗
k,l

f. (10)

∂
∂Z

f and ∂
∂Z∗ f are called the gradient6 of f with respect to Z

and Z∗, respectively. (9) generalizes to the complex case of one
of the ways to de ne the derivative of real-valued scalar functions
with respect to real matrices in [1]. The way of arranging the
partial derivatives in (9) is different than than the way given in
(5) and (6). If df = vecT (A0)d vec(Z) + vecT (A1)d vec(Z∗) =
Tr

{
AT

0 dZ + AT
1 dZ∗}, where Ai, Z ∈ C

N×Q, then it can be
shown that ∂

∂Z
f = A0 and ∂

∂Z∗ f = A1, where the matrices A0 and
A1 depend on Z and Z∗ in general. The size of ∂

∂Z
f and ∂

∂Z∗ f is
N × Q, while the size of DZ f (Z , Z∗) and DZ∗f (Z , Z∗) is 1×
NQ, so these two ways of organizing the partial derivatives are dif-
ferent. It can be shown, that DZ f (Z , Z∗) = vecT

(
∂

∂Z
f (Z , Z∗)

)
,

and DZ∗f (Z , Z∗) = vecT
(

∂
∂Z∗ f (Z, Z∗)

)
. The steepest decent

method can be formulated as Zk+1 = Zk + μ ∂
∂Z∗ f(Zk, Z∗

k).

VI. SPCOM APPLICATIONS AND EXAMPLES

Due to space limitations, we limit ourselves to developing two
key examples of cost functions and derivatives in the text below,
with particular interest in communications systems optimization. For
other useful examples of cost functions, we simply apply the provided
theory and summarize the results in Table II for scalar functions and
in Table III for matrix functions.

A. Determinant Related Problems
Cost functions that depend on the determinant appear in many

signal processing and communications related problems. Particularly
so in the capacity of wireless multiple-input multiple-output (MIMO)

6The following notation also exists [6], [12] for the gradient ∇Z f �
∂

∂Z∗ f .
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TABLE III
DERIVATIVES OF MATRIX-VALUED FUNCTIONS F (Z, Z∗)

F
(
Z, Z∗) Differential d vec(F ) DZF

(
Z, Z∗) DZ∗F

(
Z, Z∗)

Z INQd vec(Z) INQ 0NQ×NQ

ZT KN,Qd vec(Z) KN,Q 0NQ×NQ
Z∗ INQd vec(Z∗) 0NQ×NQ INQ

ZH KN,Qd vec(Z∗) 0NQ×NQ KN,Q

ZZT
(

I
N2 + KN,N

) (
Z ⊗ IN

)
d vec(Z)

(
I

N2 + KN,N

) (
Z ⊗ IN

)
0

N2×NQ

ZT Z

(
I

Q2 + KQ,Q

) (
IQ ⊗ ZT

)
d vec(Z)

(
I

Q2 + KQ,Q

) (
IQ ⊗ ZT

)
0

Q2×NQ

ZZH (
Z∗ ⊗ IN

)
d vec(Z) + KN,N

(
Z ⊗ IN

)
d vec(Z∗) Z∗ ⊗ IN KN,N

(
Z ⊗ IN

)
Z−1 −

(
(ZT )−1 ⊗ Z−1

)
d vec(Z) −(ZT )−1 ⊗ Z−1 0

N2×N2

Zp
p∑

i=1

(
(ZT )p−i ⊗ Z

i−1)
d vec(Z)

p∑
i=1

(
(ZT )p−i ⊗ Z

i−1)
0

N2×N2

Z ⊗ Z (A(Z) + B(Z))d vec(Z) A(Z) + B(Z) 0
N2Q2×NQ

Z ⊗ Z∗ A(Z∗)d vec(Z) + B(Z)d vec(Z∗) A(Z∗) B(Z)
Z∗ ⊗ Z∗ (A(Z∗) + B(Z∗))d vec(Z∗) 0

N2Q2×NQ
A(Z∗) + B(Z∗)

Z � Z 2 diag(vec(Z))d vec(Z) 2 diag(vec(Z)) 0NQ×NQ
Z � Z∗ diag(vec(Z∗))d vec(Z) + diag(vec(Z))d vec(Z∗) diag(vec(Z∗)) diag(vec(Z))

Z∗ � Z∗ 2 diag(vec(Z∗))d vec(Z∗) 0NQ×NQ 2 diag(vec(Z∗))

communication systems [14], as well as in upper bounds for the pair-
wise error probability (PEP) [13].

Let f : C
N×Q × C

Q×N → C be f(Z , Z∗) =
ln

(
det(P + ZZH)

)
, where P ∈ C

N×N is inde-
pendent of Z and Z∗. df is found by the rules in
Table I as df = Tr

{
(P + ZZH)−1d(ZZH)

}
=

Tr
{

ZH
(
P + ZZH

)−1
dZ + ZT (P + ZZH)−T dZ∗

}
.

From this, the derivatives with respect to Z and Z∗ of
ln

(
det

(
P + ZZH

))
can be found, and they are included in

Table II.

B. Kronecker Product Related Problems
An objective functions which depends on the Kronecker product

of the unknown complex-valued matrix is the PEP found in [13]. Let
KN,Q denote the commutation matrix [1], and let F : C

N0×Q0 ×
C

N1×Q1 → C
N0N1×Q0Q1 be given by F (Z0, Z1) = Z0 ⊗ Z1,

where Z i ∈ C
Ni×Qi . The differential of this function follows from

Table I: dF = (dZ0)⊗Z1+Z0⊗dZ1. Applying the vec(·) operator
to dF yields: d vec(F ) = vec ((dZ0)⊗Z1) + vec (Z0 ⊗ dZ1).
From Theorem 3.10 in [1], it follows that
vec ((dZ0)⊗Z1)=(IQ0⊗KQ1,N0⊗IN1) [(d vec(Z0))⊗vec(Z1)]

= (IQ0 ⊗KQ1,N0 ⊗ IN1) [IN0Q0 ⊗ vec(Z1)] d vec(Z0), (11)

and in a similar way it follows that: vec (Z0 ⊗ dZ1) =
(IQ0 ⊗KQ1,N0 ⊗ IN1) [vec(Z0)⊗ IN1Q1 ] d vec(Z1). Inserting
the last two results into d vec(F ) gives:
d vec(F ) = (IQ0 ⊗KQ1,N0 ⊗ IN1) [IN0Q0 ⊗ vec(Z1)] d vec(Z0)

+ (IQ0 ⊗KQ1,N0 ⊗ IN1) [vec(Z0)⊗ IN1Q1 ] d vec(Z1). (12)

De ne the matrices A(Z1) and B(Z0) by A(Z1) �
(IQ0 ⊗KQ1,N0 ⊗ IN1) [IN0Q0 ⊗ vec(Z1)], and B(Z0) =
(IQ0 ⊗KQ1,N0 ⊗ IN1) [vec(Z0)⊗ IN1Q1 ]. It is then possible
to rewrite the differential of F (Z0, Z1) = Z0 ⊗ Z1 as
d vec(F ) = A(Z1)d vec(Z0)+ B(Z0)d vec(Z1). From d vec(F ),
the differentials and derivatives of Z⊗Z , Z⊗Z∗, and Z∗⊗Z∗ can
be derived and these results are included in Table III. In the table,
diag(·) returns the square diagonal matrix with the input column
vector elements on the main diagonal [19] and zeros elsewhere.

VII. CONCLUSIONS

An introduction is given to a set of powerful tools that can
be used to systematically nd the derivative of complex-valued
matrix functions that are dependent on complex-valued matrices.
The derivation goes through the complex differential of the function
and, classically, treats the differential of the complex variable and
its complex conjugate as independent. This general framework is of
particular interest in the many optimization problems with respect to

complex parameters which arise in signal processing and communi-
cations problems.
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