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ABSTRACT
We derive a new expression for the rotation angles that maximize
the diversity (eigenvalue) product of the 8 × 8 two-symbol decod-
able quasi-orthogonal space-time block code (QO-STBC). We show
that the previously proposed sum-eigenvalue maximization criterion
for the design of rotation angles is not relevant/applicable to the
8-transmit-antenna QO-STBCs and we suggest, instead, minimum
eigenvalue maximization. Finally, working directly with the pairwise-
error-probability (PEP) upper bound expression, we obtain new true
PEP-upper-bound optimal rotation angles. Simulation studies demon-
strate and compare the error rate of the three design criteria (diversity
product, minimum eigenvalue, PEP upper bound).

Index Terms— Constellation rotation, diversity product, pairwise-
error-probability (PEP), quasi-orthogonal space-time block codes (QO-
STBC), sum or minimum eigenvalue maximization.

1. INTRODUCTION

Orthogonal space-time block codes (O-STBC) [1] achieve full trans-
mit diversity and allow single-symbol (two real symbols) maximum
likelihood (ML) decoding. The drawback of O-STBCs is that full-
rate codewords do not exist for more than two transmit antennas. For
the case of four transmit antennas, the rate limitation of O-STBCs
was overcome by quasi-orthogonal (QO) STBCs at the expense of
diversity loss [2]-[4]. Full-rate full-diversity quasi-orthogonal code-
words for four transmit antennas were then formed in [5], [6] by re-
taining the code structure of [2], [3] and modifying the constellation
of some of the symbols. ML decoding of the QO-STBCs in [5], [6]
requires joint detection of two symbols (four real symbols). Inter-
leaving real and imaginary parts of different symbols enables single-
symbol decoding of full-rank, full-diversity QO-STBCs for the four-
transmit-antenna case [7], [8], at the expense of some performance
loss in comparison with joint two-symbol dectection [5].

The codewords in [1]-[8] partition the symbols into orthogonal
sets and ML detection requires only joint decoding of the symbols
in each orthogonal set independently. As the complexity of the ML
decoder increases exponentially with the number of symbols in each
orthogonal set, a trade-off between rate/diversity and decoding re-
quirements is taking shape, especially for large number of transmit
antennas. In [9], for 8 transmit antennas QO-STBCs that attain full
diversity and full rate were presented that require, however, joint de-
tection of four symbols (eight real symbols). Reduction in complex-
ity was achieved for the 8-antenna case through the process of inter-
leaving the real and imaginary parts of different symbols [10], [11];
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the codewords can be partitioned into four orthogonal sets and hence
require joint two-symbol decoding only.

All QO-STBCs discussed above achieve full diversity order by
employing constellation rotation (CR) that aims to maximize the di-
versity product. This, in turn, leads to minimization of the upper
bound on pairwise-error-probabilities (PEP) at (asymptotically) high
signal-to-noise ratios (SNR) [12]. For space-time codes with large
diversity order and/or large number of transmit antennas, diversity
product maximization may not provide satisfactory PEP bound min-
imization and error-rate performance over operable SNRs [13].

In this paper, we consider specifically 8-transmit-antenna, full-
rate QO-STBCs and analyze their optimization via constellation ro-
tation. We limit our studies to two-symbol decodable 8 × 8 codes
and provide a new, alternative codeword form to the one in [10] to
aid our analysis. We examine four different rotation angle optimiza-
tion criteria: (i) We find a new expression for the rotation angles
that maximize the diversity product of the suggested codeword; (ii)
we show that sum-eigenvalue maximization as proposed in [13] is
irrelevant/non-applicable to the 8-transmit-antenna QO-STBCs and
(iii) suggest instead (and solve) minimum-eigenvalue maximization;
and, finally, (iv) we use directly the PEP upper bound to obtain new
true PEP-upper-bound optimal rotation angles.

The rest of the paper is organized as follows. In Section 2
we present the alternative code structure for the 8 × 8 QO-STBC.
Rotation-angle design criteria are discussed and analyzed in Section
3. Section 4 presents simulation results that demonstrate the error-
rate performance of CR modified versions of the codeword accord-
ing to the examined criteria. A few concluding remarks are drawn in
Section 5.

2. CODE STRUCTURE

Let Nt be the number of transmit antennas, Nr the number of re-
ceive antennas, and T the number of time slots over which the code
is transmitted. We denote the number of transmitted symbols by K.
Herein, we are interested in QO-STBCs with Nt = T = K = 8.
The symbols ak, k = 1, . . . , K, to be transmitted are formed by
mapping the incoming bits onto known constellations, e.g. quadrature-
amplitude-modulated (QAM), while their corresponding constella-
tion rotated version āk, k = 1, . . . , K, is created by

ām = (amR + iamI)e
iφ, m = 1, 2, 5, 6,

ān = (anR + ianI)e
iθ, n = 3, 4, 7, 8,

(1)

where akR and akI denote the real and imaginary part of the symbol
ak, respectively, and φ, θ, are the rotation angles to be optimized.
The symbols āk are interleaved to form xk, k = 1, . . . , K,
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x1 = ā1R + iā5I , x2 = ā2R + iā6I ,
x3 = ā3R + iā7I , x4 = ā4R + iā8I ,
x5 = ā5R + iā1I , x6 = ā6R + iā2I ,
x7 = ā7R + iā3I , x8 = ā8R + iā4I .

(2)

We propose the following new form for the transmitted code-
word X:

X =

�����������
x1 x2 x3 x4

−x∗
2 x∗

1 −x∗
4 x∗

3

x3 x4 x1 x2

−x∗
4 x∗

3 −x∗
2 x∗

1

04×4

04×4

x5 x6 x7 x8

−x∗
6 x∗

5 −x∗
8 x∗

7

x7 x8 x5 x6

−x∗
8 x∗

7 −x∗
6 x∗

5

� ���������� .

(3)
Upon reception, joint decoding of the symbol pairs {(a1, a3) , (a2, a4),
(a5, a7), (a6, a8)} is ML optimum.

It can be shown that our suggested code structure in (3) is equiv-
alent to the one in [10]. Mathematically, the algebraic simplicity of
(3) will enable our theoretical CR analysis that follows. Practically,
an intriguing aspect of (3) is that (unlike the codewords in [10], [11])
the codeword may be applied to a 4-transmit-antenna system across
eight time slots without any loss in rate (or diversity order under a
four-slot block fading assumption).

3. OPTIMIZATION OF ROTATION ANGLES

The probability of receiving the codeword �X when X �= �X is trans-
mitted is upper bounded by [12]

Pr(X→ �X) ≤ 1

2

�
R	

i=1 
 1

1 + Aλi
4Nt � � Nr

(4)

where A is the received signal energy, R is the rank of (X − �X),

and λi, i = 1, . . . , R, are the eigenvalues of (X − �X)H(X − �X).
The aim is to obtain rotation angles φ, θ in (1) which minimize (4)
over all codeword pairs. To proceed, we require the eigenvalues λi

of (X− �X)H(X− �X). Set ΔX
�
= X− �X and Δxk

�
= xk− �xk, k =

1, . . . , 8; then,

ΔXHΔX =

��� ΔaI2 ΔbI2
ΔbI2 ΔaI2

0

0
ΔcI2 ΔdI2
ΔdI2 ΔcI2

� �� (5)

where

Δa
�
=  K

k=1 |Δxk|2,
Δb

�
=  K/2

k=1 2Re{Δx∗
kΔxk+K/2},

Δc
�
=  2K

k=K+1 |Δxk|2,
Δd

�
=  K+K/2

k=K+1 2Re{Δx∗
kΔxk+K/2}, K = 4.

(6)

From (5) we observe that the eigenvalues of ΔXHΔX are {(Δa−Δb) ,
(Δa+Δb), (Δc−Δd), (Δc + Δd)} and exist with multiplicity of
two. Expanding and simplifying, the eigenvalues are as shown in (7)
on top of the following page. As each eigenvalue is a summation of

squares, the set of minimum eigenvalues over all possible codewords
pairs is �

(Δā1R −Δā3R)2, (Δā1R + Δā3R)2,
(Δā1I −Δā3I)

2, (Δā1I + Δā3I)
2 � (8)

and represents the worst case scenario for the upper bound in (4).
As long as all eigenvalues in (8) are non-zero, full diversity order is
achieved.

We now consider four different criteria to optimize the rotation
angles and show how φ, θ can be obtained for each criterion using
(8).

3.1. Diversity product maximization

At high SNR values assuming full transmit diversity and Nr = 1,
(4) can be approximated by

Pr(X→ �X) ≤ 1

2

�
Nt	
i=1

λi � −1 �
− A

4Nt � −Nt

. (9)

Worst-case minimization of the bound in (9) is equivalent to maxi-
mization of the minimum product of the eigenvalues (determinant of
ΔXHΔX) over all possible codeword pairs, which in turn is com-
monly represented by the diversity product ζ,

ζ =
1

2
√

Nt

minX�= �X ��� det � ΔXΔXH � ��� 1/(2T )

. (10)

Diversity product maximization was used as the rotation angle de-
sign criterion in [10], [11]. For the codeword in (3), the minimum
determinant of ΔXHΔX over all codeword pairs is

min (det(ΔXHΔX)) = � (Δā2
1R −Δā2

3R)(Δā2
1I −Δā2

3I) � 4

= [(Δa1Rcos(φ)−Δa1Isin(φ))2 − (Δa3Rcos(θ)−Δa3Isin(θ))2]4

· [(Δa1Rsin(φ) + Δa1Icos(φ))2 − (Δa3Rsin(θ) + Δa3Icos(θ))2]4

(11)
and φ, θ should be chosen to maximize (11). We evaluate and note
that the codeword in (3) (and the proposed codewords in [10], [11])
achieve diversity product of 0.1735 with 4-QAM constellation and
0.1030 with the non-rectangular 8-QAM constellation for the 8-
transmit-antenna case.

3.2. Minimum sum-of-eigenvalues maximization

In [13], it was proposed that for high diversity order systems (num-
ber of transmit antennas greater than four) the minimum trace of
ΔXHΔX be maximized over all codeword pairs. From our expres-
sion (7), we observe that

min (Tr(ΔXHΔX)) = 2[(Δā1R −Δā3R)2 + (Δā1R + Δā3R)2

+(Δā1I −Δā3I)
2 + (Δā1I + Δā3I)

2]
= 4[Δā2

1R + Δā2
3R + Δā2

1I + Δā2
3I ]

= 4[Δa2
1R + Δa2

3R + Δa2
1I + Δa2

3I ]
(12)

and is independent of φ, θ.
Hence, for the proposed codeword and that of [10], [11], the

sum-of-eigenvalues criterion in [13] is not relevant.

3.3. Minimum eigenvalue maximization

If r < Nt eigenvalues of ΔXHΔX are significantly less than 1,
then even for large SNR values, 1 + Aλi

4Nt
� 1 and (4) is approxi-

mated by

Pr(X→ �X) ≤ 1

2

�
Nt−r	
i=1

λi � −1 �
− A

4Nt � −(Nt−r)

. (13)
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{ (Δā1R −Δā3R)2 + (Δā2R −Δā4R)2 + (Δā5I −Δā7I)
2 + (Δā6I −Δā8I)

2,
(Δā1R + Δā3R)2 + (Δā2R + Δā4R)2 + (Δā5I + Δā7I)

2 + (Δā6I + Δā8I)
2,

(Δā5R −Δā7R)2 + (Δā6R −Δā8R)2 + (Δā1I −Δā3I)
2 + (Δā2I −Δā4I)

2,
(Δā5R + Δā7R)2 + (Δā6R + Δā8R)2 + (Δā1I + Δā3I)

2 + (Δā2I + Δā4I)
2 } .

(7)

The system seems to lose diversity; for the codeword in (3) and the
codewords in [10], [11], the occurrence of the eigenvalues in pairs
causes loss of diversity in steps of two. In such circumstances, it
appears reasonable to consider rotation angle choices that maximize
the minimum possible eigenvalue over all pairs of codewords. For
our code structure in (3), the rotation angles that maximize the min-
imum eigenvalue are

(φ, θ) = argmax
φ,θ

min

�
(Δā1R −Δā3R)2,

(Δā1R + Δā3R)2, (Δā1I −Δā3I)
2, (Δā1I + Δā3I)

2 � .
(14)

3.4. PEP-bound Minimization

We now prove that for all STBCs that employ CR and have no more
than two unique eigenvalues of ΔXHΔX over all possible code-
word pairs, maximization of the diversity product is equivalent to
minimization of the upper bound on PEP for all SNRs. Minimization

of the bound in (4) is equivalent to maximizing � R
i=1 � 1 + Aλi

4Nt � .

If λ1 and λ2 represent the 2 unique eigenvalues of ΔXHΔX, then

argmax � R
i=1 � 1 + Aλi

4Nt � = argmax � � 1 + Aλ1
4Nt � � 1 + Aλ2

4Nt � 	 p

= argmax � 1 + A
4Nt

(λ1 + λ2) + A2

16N2
t
(λ1λ2)

	 p

(15)
where p denotes the multiplicity of the eigenvalues. Since 1

p
(λ1 +

λ2) = tr(ΔXHΔX) = ‖ΔX‖2F is independent of rotation angles1

we need to maximize only the product of the eigenvalues to minimize
the bound in (4). In the case of a single unique eigenvalue (as in O-
STBCs for example), the STBC is independent of the rotation angle.

While the case of two unique eigenvalues applies to the 4 × 4
QO-STBC codes proposed in [5], [7], [8] and their choice of rotation
angle is PEP-bound optimal, for the 8 × 8 codewords four unique
eigenvalues exist and maximizing the eigenvalue (diversity) product
over all possible codeword pairs does not necessarily minimize the
maximum bound in (4).

We now directly find the rotation angles that minimize the max-
imum (worst case) PEP upper bound. Substitution of (8) in (4) gives
us the worst case scenario for all codeword pairs. We need to opti-
mize φ, θ such that

(φ, θ) = argmax
φ,θ

� 4
i=1 � � 1 + Aλi

4Nt � 	 2

,

λi =

�
(Δā1R −Δā3R)2, (Δā1R + Δā3R)2,
(Δā1I −Δā3I)

2, (Δā1I + Δā3I)
2 � , i = 1, 2, 3, 4.

(16)
Suitable values for A are such that Aλi > 1 ∀i = 1, 2, 3, 4.

4. SIMULATION STUDIES

We now evaluate the performance of the QO-STBC in (3) under min-
imum eigenvalue CR optimization by (14), diversity product CR op-
timization by (11), and the proposed direct maximum PEP-bound

1Constellation rotation or interleaving does not change the transmitted
energy of the STBC codeword.

CR optimization by (16). In Fig. 1, we plot the block-error-rate ver-
sus SNR when the symbols are chosen from a 4-QAM constellation.
For direct PEP-bound optimization of φ, θ, we use a fixed energy
value A that corresponds to received SNR of 20dB. We observe that
the rotation angles that maximize the diversity product and the rota-
tion angles that minimize the maximum PEP bound provide the best
results with the latter having indeed better performance. The exact
angle values are shown in Table I (along with the resulting diversity
product and minimum eigenvalue).

In Fig. 2, we repeat the studies of Fig. 1 for symbols chosen
from a 8-QAM non-rectangular constellation [5]. To obtain the PEP-
bound optimal φ, θ values we fix A to the value that corresponds
to received SNR of 30dB. Again all calculated values are given in
Table I. For reference purposes, we include in our Fig. 2 compar-
isons the 8 × 8 single-symbol decodable STBC in [7]. Since the
code in [7] contains only two unique eigenvalues the rotation angle
of tan−1(1/2) is PEP-bound optimal for that code; since its rate
is 3/4, we select symbols from a 16-QAM constellation to ensure
equal spectral efficiency for all codewords under comparison. The
PEP-bound optimized codeword in (3) offers a gain of about 1 dB
over the single-symbol decodable STBC in [7]. The minimum eigen-
value optimized version performs almost similarly well. As argued
in Section 3.3, due to decreased values of the minimum eigenvalues
as compared to the 4-QAM scenario, the maximum diversity (eigen-
value) product optimized system seems to lose diversity over the
operable SNR range. Similar performance loss was also observed
in [10] when the rotation angles were chosen to maximize the diver-
sity product.
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Fig. 1. Block-error-rate versus SNR for 4-QAM constellation.

5. CONCLUSIONS

We gave an alternative representation of the 8×8 two-symbol decod-
able quasi-orthogonal space-time block code (QO-STBC) and found
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TABLE I

OPTIMAL ANGLES

QAM Criterion (φ, θ) Diversity Product Min. Eigenvalue

4 Diversity Product (37.9, 21.4) 0.1747 0.0093

4 Min. Eigenvalue (30.9, 13.3) 0.1623 0.0524

4 Max. PEP Bound (28.5, 40) 0.1352 0.0112

8 Diversity Product � tan−1(2)/2, tan−1(1/2)/2 � 0.1071 2.35 × 10−4

8 Min. Eigenvalue (3, tan−1(2)) 0.0732 0.0022

8 Max. PEP Bound (7.2, 25.1) 0.0792 2.7 × 10−4
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Fig. 2. Block-error-rate versus SNR for non-rectangular 8-QAM
constellation (16-QAM for the rate 3/4 code in [7]).

three different sets of rotation angle values: maximum diversity-
product optimal, maximum minimum-eigenvalue optimal, and mini-
mum maximum-pairwise-error-probability-bound (PEP) optimal. As
a side result, we showed that maximization of the sum of eigenvalues
is an irrelevant/non-applicable criterion for the 8-transmit-antenna
QO-STBCs.

The rotation angle design criterion that this work is eventually
promoting is the direct minimization of the maximum value of the
PEP upper bound. As we showed for any STBC, diversity prod-
uct maximization succeeds in minimizing the maximum PEP-upper-
bound value only if two unique eigenvalues alone appear over all
codeword pairs (not the case of course, for the examined 8× 8 QO-
STBC). For larger symbol constellations with decreased Euclidean
distance, minimum eigenvalue maximization may be an effective
simple alternative.
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