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ABSTRACT
Herein, the design of linear dispersion codes for block based
multiple-input multiple-output communication systems is investi-
gated. The receiver as well as the transmitter are assumed to have
perfect knowledge of the channel, and the receiver is assumed to
employ maximum likelihood detection. We propose to use linear
precoding and lattice invariant operations to transform the channel
matrix into a lattice with large coding gain. With appropriate ap-
proximations, it is shown that this corresponds to selecting lattices
with good sphere packing properties. Lattice invariant transforma-
tions are then used to minimize the power consumption. An algo-
rithm for this power minimization is presented along with a lower
bound on the optimization. Numerical results indicate that there is a
potential gain of several dB by using the method compared to chan-
nel inversion with adaptive bit loading.

Index Terms— MIMO systems, Communication systems, Sig-
nal processing, Fading channels, Channel coding

1. INTRODUCTION

Multiple-input multiple-output (MIMO) systems has received much
attention in recent years due to the tremendous potential in increased
transmission rate [1]. Multiple antenna systems can be combined
with temporal block coding, e.g. orthogonal frequency-division mul-
tiplexing (OFDM), so that data is multiplexed over space, frequency
and time. If the channel is not perfectly known at the transmitter,
one typically considers block codes with good diversity properties to
protect the data from deep fades. Design of space-time block codes
(STBC) with good diversity properties has received much attention,
see [2, 3, 4] with references.

In this paper, we assume that the channel is perfectly known
at both the receiver and transmitter, hence the main objective is
to increase coding gain (to protect data from additive noise) rather
than diversity gain. This problem has also received much attention
throughout the years, although we believe there are still some open
questions especially when it comes to designing practical and ef -
cient block-based signaling schemes. The optimal capacity achiev-
ing code was derived in [1]. Unfortunately, the optimal codebooks
are in nitely large and virtually impossible to implement in prac-
tice. Instead the blocks usually consist of a linear combination of
nite sized constellations such as M-QAM (quadrature amplitude

modulation) or M-PSK (phase shift keying). In the context of block
based MIMO transmission this is referred as linear dispersion codes
(LDC) [5]. For completeness, an alternative to linear precoding is
non-linear precoding, see [6] with references.

One common strategy is to use the transmitter side channel state
information (TX-CSI) to diagonalize the channel into parallel non
interfering sub-channels that can be resolved at the receiver using
a linear detector. This is the case for OFDM block coding. The
data rate in each sub-channel is adapted based on the signal to noise
ratio (SNR), commonly using the gap approximation [7]. This di-

agonalizing strategy has been shown to be suboptimal for certain
linear detection algorithms [8, 9], where the error rate is minimized
by mixing the sub-streams using discrete fourier transform (DFT)
rotations.

Here the precoding problem is analyzed from a different point
of view. Instead of using low complexity linear receivers, we as-
sume that the optimal maximum likelihood (ML) detector is em-
ployed [10]. An algorithm for designing close to optimal block codes
is proposed, and again it is concluded that the diagonalizing precoder
is sub-optimal. A bound that speci es the limits of the algorithm and
that helps us in the code design is derived. Known results about lat-
tice sphere packing will be used in the design of the code [11].

The set of complex valuedN byM matrices is denoted CN×M ,
and similarly for real valued matrices RN×M . The set of integer
vectors with dimension N is denoted ZN . Expectation is denoted
E[...]. The vectorization operator on matrices is denoted vec(·), the
determinant is | · |, and ⊗ is the Kronecker product of matrices. The
complex Gaussian distribution is denoted CN (·, ·).

2. SYSTEM MODEL
Consider a MIMO communication system with N transmitting
andM receiving antennas over a at fading channel. Similar to [5],
it is assumed that the channel matrix,H, is constant during at leastL
channel uses. Using complex notation, the transmitted signal block
is C ∈ C

N×L, the channel matrix isH ∈ C
M×N , and the additive

noise block is V ∈ C
M×L. The noise is assumed to be zero-mean,

complex Gaussian. The received signal block Y ∈ C
M×L is then

modeled as
Y = HC+V. (1)

In this paper it is assumed that the channel matrix is perfectly known
to both the transmitter and the receiver. A useful mathematical tool
for handling block-based transmission is to vectorize the blocks

vec(Y) = I⊗H vec(C) + vec(V),

and then separate the complex valued system equations to real valued
equations of double dimension. De ne

G =

� ��
I⊗H� ��

I⊗H�
−��

I⊗H� ��
I⊗H�

�
, y =

� ��
vec(Y)

�
��

vec(Y)
�

�
,

and similarly the vectorizations C to c, andV to v. The vectorized
system equations are given by

y = Gc+ v. (2)
Assume the noise, V, is circularly symmetric complex Gaussian.
Assume furthermore (without loss of generality) that the noise has
been pre-whitened from the receiver side, so that it is iid and zero
mean with variance one. The vectorized real valued noise vector, v,
is then Gaussian iid and zero-mean.

Any pulse amplitude modulation (PAM) or QAM modulated
linear dispersion code can be assembled using c = Fx, where
F ∈ R2NL×K is a data independent precoding matrix (it is assumed
that 2NL ≥ K), and x is the PAM data vector normalized such that
x ∈ Z

K + 1/2. The elements of x are assumed to be independent
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random variables that represent the data which is to be transmitted.
The variance depends on the bit load, i.e. the number of bits an ele-
ment represents. Let the bit load on each element be b1, ..., bK , then
the covariance matrix is

E
�
xx

T� ≡ Σ = diag
�4b1 − 1

12
, ...,

4bK − 1

12

�
.

Note that the system equation (2) is actually more general than the
original system model (1) since G may include multiple temporal
nite impulse response terms to model frequency selective channels.

Consequently, the results presented here can be used to design codes
for ISI-combating block codes as well as MIMO space-time block
codes.

3. PROBLEM FORMULATION
The problem we wish to solve in this paper is how to optimally select
the bit load b1, b2, ..., bK , and the precoder matrix, F, such that the
block error rate is minimized under a constraint on the transmitted
power. The receiver is assumed to use optimal ML detection. The
power constraint may be de ned in various ways, herein the aver-
age transmitted power is used P = Tr{FΣFT}/L ≤ Pmax. This
power constraint is widely adopted in the literature, partly due to its
mathematical simplicity.

Using ML, the probability of detection error, Pe, (disregarding
possible outer error protecting codes) is dif cult to evaluate in gen-
eral. It can however be upper bounded using the well known union
bound

Pe ≤ P̄e ≡ 1

2RL

�
i

�
j �=i

PEPi,j , (3)

that consists of a sum of pairwise error probabilities de ned as

PEPi,j = Q

� |GF(xj − xi)|√
2

�
.

For a de nition of the Q-function see for example [4]. Due to the
steep decent ofQ-function, only a few terms in the union bound con-
tribute to P̄e, and minimizing the maximum PEP will, for moderately
large SNR, effectively minimize the union bound. TheQ-function is
furthermore a strictly decreasing function so we would like to design
a codebook with data rate R and where the minimum distance

d2min = min
i,j �=i

(xi − xj)H
F

H
G

H
GF(xi − xj),

is as large as possible. Because xi − xj belongs to the ZK -lattice
we know that the minimum distance is always greater than or equal
to the minimum distance of the lattice with generator matrixM =
GF. Let us denote the minimum Euclidian distance of the lattice
μ(M). In the general case dmin ≥ μ(M), however for high data rates
and/or ’nice’ lattice structures we may expect μ(M) = dmin. This
approximation has a number of advantages, rst of all the minimum
distance decouples from the actual bit load since μ(M) does not
directly depend on Σ. Secondly, the minimum distance becomes
invariant to certain lattice transformations. Let U be an arbitrary
real valued unitary matrix and let B be a unimodular integer valued
matrix with determinant |B|±1, then we have μ(UMB) = μ(M).
This means there are three different properties that can be adjusted to
make the code more power ef cient without changing the minimum
distance. The power that is saved can then be utilized to increase the
minimum distance.

There is a slight problem with this approach that one needs to
be aware of. A lattice point has more than one nearest neighbor at
a distance μ(M) and this fact may have a negative impact on the
performance. De ne the number of nearest neighbors of a lattice as
N(M). Again, assuming only the closest lattice points affect the
union bound (3), it can be approximated as

P̄e ≈ N(M) Q

�
μ(M)√

2

�
.

For low dimensional or unstructured lattices, the number of near-
est neighbors does not have a substantial effect on the performance.
However, for structured, dense, high dimensional lattices this num-
ber can actually dominate the error performance.

4. LATTICE BASED PRECODING ALGORITHM
If the dimension of the channel Gram matrix, GTG, is larger than
the number of spatial sub-channels, K, then it is always optimal to
let the precoder project on to the K’th strongest singular values of
GTG (this minimizes the transmitted power for any xed lattice,
M). If the singular value decomposition (SVD) of the channel ma-
trix is G = UGΛGV

T
G, the subspace containing the K strongest

singular values is de ned as ŨGΛ̃GṼT
G, where Λ̃G isK ×K, and

ŨG, ṼG are the corresponding orthonormal column vectors. The
precoding matrix can then be projected to form a K × K matrix
as F̃ = ṼT

GF. Using such a precoder, and a lattice with generator
matrixM, we can calculate an equivalent lattice with aK×K gen-
erator matrix on the formUMB = Λ̃GF̃. The generator matrixM
will be referred as the base lattice to separate it from the generator
matrix UMB that is used for transmission. The transmitted power
is

P = Tr
�
Λ̃

−2

G UMBΣB
T
M

T
U

T	/L.
The goal now is to minimize the power by selecting a suitable bit
load (implicitlyΣ), a unimodular integer matrixB and an orthonor-
mal matrix U. The problem is dif cult since it involves joint opti-
mization of discrete and real valued variables. Herein a sub-optimal
algorithm for this optimization is proposed. The idea is to optimize
each parameter at a time, and then iterate until the solution con-
verge. Due to the discrete nature ofB and the bit load, convergence
is reached in nite time.

4.1. Optimization ofU
Assuming the singular values in Λ̃G have been ordered in decreasing
order along the diagonal, the optimization of U simply boils down
to solving a SVD. De ne the SVD of

MBΣB
T
M

T = VΛVT,

where the singular values in Λ are decreasing along the diagonal,
then the optimal U = VT. The proof follows from majorization
theory (see [12] chapter 3).

4.2. Optimization of the bit load
Redistributing the bit load, b1, ..., bK , so that the power is minimized
while the data rate is xed can be optimally solved using the follow-
ing algorithm. First, de ne the basis power vector as

d = diag{BT
M

T
U

T
Λ̃

−2

G UMB}.
The vector speci es the power of the basis vectors of the precoding
matrix, and basis vectors with high power cost should intuitively
have a low bit load. Assume that the bit loading has been initialized,
and let the current bit load be b1, ..., bK , then the power consumption
is

P =
�
i

di(4
bi − 1)

12L
,

where di is the i’th element of d. If one bit is moved from sub-
stream n tom, the change in power consumption will be

Pnew − Pold = −dn4bn

16L
+
dm4bm

4L
.

So, in order to reduce the power consumption, n and m have to be
selected such that dn4bn ≥ 4 dm4bm . Using this result we propose
the following algorithm for bit loading

1. Let n be the index of the maximum element of
d14b1 , ..., dK4bK with non-zero bit load. Then let m be the
index of the minimum element.
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2. Then check whether 4 dn4bn > dm4bm . If so, move one bit
from bn to bm. Go back to 1. Otherwise, the bit load has been
optimized and the algorithm can terminate.

It can be shown that this algorithm always nds the global optimum.
The proof is omitted here and we would like to refer to the coming
journal article on this topic.

4.3. Optimization ofB
Optimization ofB is somewhat more dif cult to do optimally. How-
ever, there exist ef cient algorithms for basis reduction that will at
least reduce the transmitted power. One such algorithm that has a
polynomial complexity is the Lenstra, Lenstra and Lovasz (LLL) al-
gorithm [13]. Here, the LLL algorithm is utilized to reduce the basis

of A = Λ̃
−1

G UM. The result is a matrix B that has determinant
|B| ± 1 and that reduces the lengths of the basis vectors and con-
sequently the total power consumption will be reduced (at least not
increase).

4.4. Combined optimization
The ordering of the three partial optimization steps above may have
an impact on the nal result. Without going too deep into this ques-
tion, the ordering that appears to give the best result in most cases
is to rst initialize B = I, distribute the bit load as evenly as possi-
ble, and perform an initial optimization ofU. The algorithm should
then iteratively optimize the matrices in the following order B, U,
Σ and U. The iteration should stop when the algorithm converges.
Typically no more than two iterations are needed.

5. SELECTING THE BASE LATTICE
Minimizing the transmitted power for a base lattice,M, is clearly a
step towards minimum distance maximization. However, the choice
of optimal base lattice is yet to be determined. In this section, a
fundamental lower bound to how much the power can be decreased
using the algorithm in Section 4 is derived, and the task reduces to
use the lattice that has the lowest fundamental lower bound. The
relation between arithmetic and geometric means gives us the fol-
lowing bound

PL ≥ K��Λ̃−2

G UMBΣB
T
M

T
U

T��1/K = K

� |MMT||Σ|
|Λ̃G|2

�
1/K

≥ K(4
RL

K − 1)

12
· |MMT|1/K

|Λ̃G|2/K , (4)

where the last inequality is due to the fact that |Σ| is minimized for a
certain bit load if all bits are equally distributed. Note that the bound
(4) is truly a lower bound to the power minimization algorithm since
the right hand side is independent ofB,Σ, andU. The determinant
|MMT| is the squared volume of a Voronoi cell of the lattice and it
is related to the minimum distance of the lattice by the packing gain,
σ(M), of the lattice, de ned here as μ2(M) = |MMT|1/Kσ2(M).
To conclude, there is a fundamental lower bound to how much the
transmitted power can be reduced by utilizing invariance properties
of a certain lattice type

P ≥ K(4RL/K − 1)

12L
· d2min

σ2(M)|Λ̃G|2/K . (5)

The lower bound is tight if the singular values of

Λ̃
−2

G UMBΣB
TMTUT are all equal and the bit loads at the

same time are as equally distributed as possible. If we can assume
that the power may be minimized suf ciently close to the funda-
mental lower bound for most ’nice’ lattice generator matrices, then
the question of maximizing the minimum distance boils down to
nding a lattice with the best possible sphere packing (i.e. lattices

with large σ2(M)). This is a mathematical problem that has no
known optimal solutions for most dimensions, however many
lattices with good sphere packing properties have been found [11]
and we can simply pick the best known lattice for each dimensional
size of interest. In Tab. 1 the packing gain and the number of
nearest neighbors are listed for some well known lattices that are
all available in [11]. The optimal dimension of the lattice can

Lattice Dimensions σ2(M) [dB] N(M)

Z
K K 0.000 2 ·K
E8 8 3.010 240
K12 12 3.635 756
Λ16 16 4.515 4320

Table 1. Examples of packing gains, σ2(M), and the number of
nearest neighbors, N(M),for different lattices with dense packings.

be approximated by comparing the fundamental lower bound for
certain values of K. When doing so, it is important to note that the
diagonal matrix Λ̃G also depends on K. Possible sources of errors
in this analysis are the bound that is approximative, and the impact
of nearest neighbors that quickly grows with the dimension size.
In the numerical examples below, a maximum lattice dimension is
speci ed and used unless a lower dimension would perform better
according to the bound (5).

is used to check whether a lower dimension would perform bet-
ter, in which case the lower dimension is used. In this way one can
also be ensured that the complexity of the ML decoder at the receiver
is at an acceptable level.

6. NUMERICAL RESULTS

The proposed scheme can provide a packing gain of several dB’s
for suf ciently large SNR’s and suf ciently large lattice dimensions.
Packing gain is however not the only factor in uencing the perfor-
mance. Speci cally, the number of nearest neighbors can have a
dominant negative effect for low to moderately low SNR’s. It re-
mains to be seen how much of the packing gain that can be realized
under realistic transmission conditions. In this section we will try to
shed some light on these questions by using numerical examples.

There are many potential applications for the proposed scheme,
the examples herein are however limited to narrow band MIMO sys-
tems of various dimensions, where the channel matrix consists of
independent Rayleigh fading matrix elements. The channel matri-
ces are generated as vec

�
H
� ∼ CN

�
0, I

�
. This channel model is

widely used for modelling MIMO channels with rich scattering, such
as non line of sight indoor channels. Due to the fact that the TX-CSI
is perfect, the de nition of the SNR is not trivial. Here, it is simply
de ned as the transmitted power, P .

The optimization algorithm will be applied to the ZK -lattice,
equivalent to channel inversion with adaptive bit loading, as well as
the lattice with the best known sphere packing. In addition to this,
the so called blind transmission will be simulated for comparison. It
is a relatively simple transmission scheme that does not utilize any
TX-CSI. The bit load is as evenly distributed as possible and the
precoding matrix is given by F = I2NL.

Fig. 1 shows a comparison of the block error rate performance
of a six by six MIMO system as a function of SNR for the Z12 and
K12 lattices. The maximum dimension of the lattices is 12, although
lower dimensions are used whenever it improves the fundamental
lower bound (5). The data rate is 24 bits per channel use. We ob-
serve that the packing gain of the K12 lattice ensures a gain over
the Z12 lattice of approximately 2 dB in the high SNR region. The
loss compared to the gain in Tab. 1 can be explained by the higher
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Fig. 1. Block error rate comparison between the Z12 lattice, theK12

lattice, and 12-dimensional V-BLAST. The channel is a 6×6 MIMO
Rayleigh fading channel, and the data rate is 24 bits/use.
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Fig. 2. Block error rate comparison between the Z16 lattice, the Λ16

lattice, and 16-dimensional V-BLAST. The channel is a 8×8 MIMO
Rayleigh fading channel, and the data rate is 32 bits/use.

number of nearest neighbors of the K12 lattice. Interestingly, blind
transmission works quite well for low SNRs. This can again be ex-
plained by the lower amount of nearest neighbors due to the irregu-
larity of the code. The conclusion is that if one would like to utilize
TX-CSI to reduce the BLER, one needs to use a lattice with a good
tradeoff between sphere packing gain and number of nearest neigh-
bors. Traditional channel inversion with adaptive bit loading is not
suf cient in this case. This fact is even more evident for systems
with higher dimensions. In Fig. 2 an eight by eight MIMO channel
is simulated. The data rate is 32 bits per channel use. In this case the
blind transmission scheme outperforms Z16 lattice precoding. Note
however that in the more realistic scenario with correlation between
channel elements one can expect blind transmission to suffer greater
loss in performance than the Z16 precoder. The densest lattice for
this scenario is the Λ16 lattice. The gain is on the order of 2 - 3 dB
which is smaller than the packing gain would imply. This can be
explained by the larger number of nearest neighbors of the Λ16 lat-
tice compared to the Z16 lattice. As the dimension grows larger, the
loss due to nearest neighbors ’eats up’ the gain due to the increased
packing density. Hence, there is a tradeoff that has to be considered
when selecting the lattice.

7. CONCLUSIONS
The problem of designing linear dispersion codes for block based
MIMO communication systems has been investigated. The receiver
as well as the transmitter have perfect knowledge of the channel,

and the receiver employs ML detection. The main idea is to use lin-
ear precoding and lattice invariant operations to transform the chan-
nel matrix into a lattice with good sphere packing properties. We
demonstrated how to minimize the transmit power for an arbitrary
lattice. An algorithm and a optimization bound for this power min-
imization was presented. The bound motivated the use of lattices
with dense sphere packing, although it was also concluded that the
number of nearest neighbors affects the performance. Numerical re-
sults indicate that there is a potential gain of several dB by using the
method compared to channel inversion with adaptive bit loading.
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