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ABSTRACT

Exploiting channel state information at the transmitter and receiver to design
an optimal linear precoder and decoder for a multiple-input multiple-output
(MIMO) communication system is an active research area. The design is of-
ten based on the information rate criterion, that is to design the precoder and
decoder such that the system capacity is maximized, subject to the average
transmit power constraint. Although such an optimization problem has been
considered intensively and there have been numerous proposals so far, they
are not rigorously correct. We propose a mathematically rigorous framework
for solving this optimization problem. Our proposed solution is applicable to
both MIMO at fading and frequency selective fading channels. Simulations
verify the theoretical analysis.

Index Terms— MIMO system, entropy, mutual information, precoder
and decoder

1. INTRODUCTION

The problem of designing an optimal pair of linear precoder and
decoder has been considered intensively in a number of publica-
tions [5, 8, 9, 10] based on different criteria such as minimum mean
squared error (MMSE), bit error rate (BER), maximum channel ca-
pacity, and maximum signal to interference-plus-noise ratio (SINR).
In the context, the channel capacity can be substantially improved
by appropriately reshaping the correlation matrices of the transmit-
ted and received blocks. In a multiple transmit and multiple receive
antenna communication system, the linear precoder reshapes the cor-
relation of the input signal before the transmission and the linear
decoder reshapes the correlation of the output signal after reception
[1, 9]. One of the arising issues is that the optimal correlation matrix
may be singular and that there is a discrepancy in the de nition of
mutual information between input and output [1, 9]. The objective
of this paper is twofold:
(i) in Subs 1.1 and 2.2 we argue that the formula for the mutual in-
formation between the input and the output given by [1], which was
subsequently used in [9] and other related works, is not always cor-
rect and propose a corrected version.
(ii) Using the linear matrix inequality approach (very popular in
control theory, see e.g. [3] and references therein), in Subs 2.3, 2.4
and the whole Section 3 we show how to obtain a pair of precoder
and decoder that maximizes the mutual information between the in-
put and output under very general conditions that are free from rank
and dimension restrictions such as in [1, 9]. Thus this approach leads
to also a new class of optimal solutions as well as a new mathemati-
cally rigorous derivation. Numerical examples in Section 4 show the
advantages of our methods and verify our analytical results.
Notation: The superscript T denotes transpose, the superscript H
denotes the Hermitian transpose, while ||.|| denotes the Frobenius

norm, E{.} the expectation, 〈.〉 the trace of a matrix, rank{.} the
rank of a matrix, j =

√−1 pure imaginary. I and 0 denote the iden-
tity and zero matrices respectively, however, sometimes their sizes
are indicated to avoid confusion and IN , 0N×M indicate theN ×N
identity and the N × M zero matrices respectively. A > 0 (A ≥ 0,
resp.) stands for strictly positive Hermitian (positive, resp.) de nite
matrix A. In what follows, Mn denotes the set of all n × n uni-
tary matrices, while Dn is the set of real n × n diagonal matrices.
For a given matrix X we denote its pseudo-inverse matrix by X†

while x+ means max{0, x} for a scalar x and diag [X Y ] means[
X 0
0 Y

]
for two square matrices X and Y .

2. PROBLEM DEFINITION

2.1. Pseudo-inverse and entropy of general Gaussian distribu-
tion

We start from a general de nition, which is more popular in the sta-
tistical community, that allows singular covariance matrices:
De nition [7, p. 518]. An n-dimensional random variable u is
Gaussian if and only if every linear function THu of u has a uni-
variate normal distribution.
• Such random variable u has a mean μ and covariance Σ.
• In accordance with this de nition, if there are μ and Σ such that
for every T ∈ Cn, THu is a univariate Gaussian with mean THμ
and covariance THΣT then u is an n−dimensional Gaussian with
E(u) = μ and E((u − μ)(u − μ)H) = Σ, and we denote it as
u ∼ Nn(μ,Σ).

Theorem 1 [7, p. 528] If u ∼ Nn(μ,Σ) then its density function is

pu(v) = (2π)−k/2(
k∏
i=1

λi)
−1/2e−

1
2 (v−μ)HΣ†(v−μ), where λi are

nonzero eigenvalues of Σ. Consequently, the entropy of u isH(u) =

1
2
log[(2πe)k

k∏
i=1

λi].

In what follows we denote the above function (2πe)k
k∏
i=1

λi

as gdet(2πeΣ). Note that gdet(2πeΣ) = det(2πeΣ) if and only if
Σ > 0, and in general

gdet(ΣΨ) �= gdet(Σ).gdet(Ψ). (1)

For instance, for Σ = diag [ 2 1 0 ] ,Ψ = diag [ 0 1 2 ] then
gdet(ΣΨ) = 1 �= 4 = gdet(Σ).gdet(Ψ).
Now consider a multiple-input-multiple-output (MIMO) model

z = Hx+ ν (2)
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where the input x ∈ Cn is complex, Gaussian zero mean with co-
varianceRxx (possibly singular), ν ∈ Cν is the Gaussian noise with
covariance Rνν and is independent of the input x and H ∈ Cν×n.
It is known that the output z ∈ Cν is also Gaussian, and its covari-
ance as well as the input-output correlationRxz are easily calculated

Rzz = E(zz
H) = HRxxHH +Rνν , Rxz = E(xzH) = RxxHH . (3)

The following result adapted from [7, p. 522] is important.

Theorem 2 The conditional distribution z|x of z given x is the Gaussian
Nν(RHxzR†

xxx,Rzz − RHxzR
†
xxRxz).

Now, the mutual information between the output z and input x is de-
ned as I(x; z) = H(x) − H(x|z), where according to Theorem 1
H(x) = 1

2
log gdet(2πeRxx) andH(x|z) = 1

2
log gdet(2πeHRxx).

Thus, with the de nition, R⊥
x|z = Rxx − RxxHH(HRxxHH +

Rνν)
−1HRxx, the mutual information between x and z is given by

I(x, z) =
1

2
log

gdet(2πeRxx)

gdet(2πeR⊥
x|z)

(4)

Of course, the formula (4) is too complicated and needs simpli -
cation. The next section discusses several shortcomings of previous
works and section 2.3 presents our remedy.

2.2. Discussion of previous results and remedy

In [1] the following steps have been taken to simplify the mathemat-
ical formula (4):
• Use the identity

gdet(2πeRxx)

gdet(2eπeR⊥
x|z)

= gdet((R⊥
x|z)

†Rxx) (5)

to rewrite (4) as

I(x, z) =
1

2
log gdet((R⊥

x|z)
†Rxx). (6)

• Then use the matrix identity

(R⊥
x|z)

† = R†
xx +HHR−1

ννH (7)

to simplify (6) to

I(x, z) =
1

2
log gdet((R†

xx +HHR−1
ννH)Rxx). (8)

The expression (8) has also been used, e.g. in [9], as the starting
point. However, one observes that
• Although 1/gdet(2πeR⊥

x|z) = gdet((2πeR⊥
x|z)

†) and consequently

gdet(2πeRxx)/gdet(2πeR
⊥
x|z) = gdet(Rxx)gdet((R

⊥
x|z)

†) (pro-

vided that Rxx and R⊥
x|z have the same number of nonzero eigen-

values) the identity (5) is still not always valid because

gdet(Rxx)gdet((R
⊥
x|z)

†) �= gdet(Rxx(R
⊥
x|z)

†)

in general (see (1)). In other words, the expression (6) is valid
only when Rxx and R⊥

x|z are both nonsingular and then the pseudo-

inverse matrix R†
xx in (6) is the usual inverse R−1

xx .
• The identity (7) is not always valid. As a simple counter-example
take Rxx = diag[1 1 0], H = Rvv = I3. Then it is easily seen that
R†
xxdiag[1 1 0] and R⊥

x|z = diag[0.5 0.5 0] and then

(R⊥
x|z)

† = diag[2 2 0] �= diag[2 2 1]R†
xx + HHR−1

νν H.
Therefore (8) and (6) are not equivalent.
• The approach of [1, 9], in the derivation of the optimal solution
to the problem of maximizing the objective de ned by (8), uses
the following generalization of the Hadamard inequality gdet(Σ) ≤

∏
Σ(i,i) �=0 Σ(i, i)∀Σ ≥ 0. However, this generalization is again not

always valid. For instance, take Σ =
[
1 1
1 1

]
, then

gdet(Σ) = 2 > 1 = Σ(1, 1)Σ(2, 2).
In conclusion, the simpli ed formula (8) derived in [1] and used in
[9] is always valid only under the condition that Rxx > 0 (and thus
nonsingular). When Rxx is possibly singular, all main tools actually
used for the derivation of the results of [1, 9] such as generalized
determinant of matrix product, generalized matrix inverse formula,
generalized Hadamard inequality fail to hold. An another approach
for derivation of mutual information is needed as follows.
The formula (8) is not only invalid but also complex than necessar-
ily. We now provide its corrected and simple version.
For, consider the following alternative expression I(x; z) = H(z)−
H(z|x) where H(z) = 1

2
log gdet(2πe(HRxxHH +Rνν)),

H(z|x) = 1
2
log gdet(2πeRνν).

Thus our result that corrects (8) can be summarized as follows

Theorem 3 The mutual information between the input x and output
z related by equation (2) is

1

2
log

gdet(2πe(HRxxHH +Rνν))
gdet(2πeRνν)

. (9)

When Rνν > 0 as assumed in [1] then Rzz = HRxxHH +Rνν ≥
Rνν > 0, and (9) simpli es to

1

2
log det((HRxxHH +Rνν)R−1

νν ). (10)

Observe that (10) is the same as (8) if and only if Rxx > 0 (i.e. Rxx
is nonsingular).

2.3. Optimal precoder and decoder MIMO problem formula-
tion and assumptions

A MIMO communication channel can be modeled by

y = HFx+ n (11)

where x ∈ C� is the transmitted signal, y ∈ CnR is the received
signal, F ∈ CnT×� is the pre ltering matrix (to be designed), H ∈
CnR×nT is the channel state matrix (which is assumed known) and
n ∈ RnR is the noise. Thus nT and nR are numbers of transmit and
receive antennas, respectively.
The following assumptions are made: E[xxH ] = R� > 0, E[nxH ] =
0, E[nnH ] = RnR > 0, � ≤ min{nT , nR}, in which case nT − �
is the transmission redundancy. Unlike most works on precoder and
decoder design [5, 8, 9, 10], we do not impose any restriction on the
rank of the channel matrix H . For instance, the following restric-
tions have been implicitly assumed in [10]: � = min{nT , nR} and
H is of full rank, so rank(H) = min{nT , nR} = �.
Our MIMO design problem is to design both precoder matrix F and
decoder matrix G ∈ C�×nR such that the mutual information be-
tween the transmitted signal Fx and the transmitted symbol

z = Gy = GHFx+Gn (12)

is maximal.
According to (9) this problem is formulated as

max
F,G,〈FR�FH〉≤PT

f(F,G) (13)

where f(F,G) = log
gdet(2πe((GHF )R�(GHF )

H+GRnRG
H ))

gdet(2πeGRnRG
H )

, and the

transmitted power PT is given. We cannot simply simplify gdet(.)
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by det(.) in (13) because it is unknown beforehand whether the ma-
trix GRnRG

H is singular or not.
In the next sections we will derive the optimal decoder matrixG and
precoder matrix F .

3. OPTIMAL DECODER FOR A FIXED PRECODER

To consider the optimization problem (13), rst we x F and con-
sider the optimization problem

max
G∈C�×nR

log
gdet(2πe((GHF )R�(GHF )

H +GRnRG
H))

gdet(2πeGRnRG
H)

(14)

As it can be seen in the previous section, the function gdet(.) causes
a lot of unexpected troubles that make the linear algebraic approach
of [1, 8] hardly work. To address the problem (14), using the ma-
trix inequality approach, which has been proved very powerfull in
control theory [3] we are able to show the following result

Theorem 4 For xed F ∈ CnT×� and

H = R
−1/2
nR HFR

1/2
�

∈ CnR×� (15)

the following equality holds

max
G∈C�×nR

gdet(2πe((GHF )R�(GHF )
H +GRnRG

H))

gdet(2πeGRnRG
H)

=

det(I� +HHH). (16)

Moreover, the maximum is attained at G =
[
G� O�×(nR−�)

]
VnRR

−1/2
nR G�V�×nRR

−1/2
nR , where G� is any nonsingular matrix of

dimension � × � and VnR is a unitary matrix of the form VnR =[
V�×nR

V(nR−�)×nR

]
with V(nR−�)×nRH = 0(nR−�)×�, i.e. V(nR−�)×�

consists of (nR − �) orthonormal vectors from the left zero space of
H.

Proof.As RnR > 0, using the variable change G ← GR
1/2
nR in (16),

the proof then reduces to establishing the following

max
G∈C�×nR

gdet(2πe(GHHHGH +GGH))
gdet(2πeGGH)

= det(I� +HHH) (17)

First, we show that

gdet(2πe(GHHHGH +GGH))

gdet(2πeGGH)
≤ det(I�+HHH) ∀G ∈ C�×nR .

(18)
When G is full rank, GGH is nonsingular and it can be seen that

gdet(2πe(GHHHGH +GGH))
gdet(2πeGGH)

= det(I� +HHGH(GGH)−1GH)

One can see that 0 < I� +HHGH(GGH)−1GH ≤ I� +HHH and
by

det(I� +HHGH(GGH)−1GH) ≤ det(I� +HHH) (19)

hence we have (18). The proof of (18) when G is not full rank is
more involved.
Apply the following SVD for G of rank k < �:
G = U�

[
Σ� 0�×(nR−�)

]
UnR ,Σ� = diag [ Σk 0�−k ], U� ∈ M�,

UnR ∈ MnR .
Then

GGH = U�Σ�U
H
� , gdet(2πeGGH) = det(2πeΣ2k), (20)

GHHHGH +GGH = U�diag [ ΣkXΣk +Σ2k 0�−k ]UH�

with the partition UnRHHHUHnR =
[
X ∗
∗ ∗

]
, X ∈ Ck×k .

Hence

gdet(2πeGHHHGH +GGH) = det(2πe(ΣkXΣk +Σ
2
k)). (21)

In view of (20) and (21) in can be shown that

gdet(2πe(GHHHGH +GGH))
gdet(2πeGGH)

≤ det(HHH+ I�)

Hence, (18) follows.
It remains to show thatG = G�V�×nR attains the right hand side of (18). It
can be checked that

GGH = G�G
H
� , HHGH(GGH)−1GH = HHH. (22)

Thus, I� +HHGH(GGH)−1GH = I� +HHH and so
det(I�+HHGH(GGH)−1GH) = det(I�+HHH), which together with
(19) prove the statement of the Theorem.
Remark. For each precoder F , there are many choices for unitary VnR .
For instance, VnR = U

H
nR

, where columns of UnR are orthonormal eigen-

vectors ofHHH in the following SVD forH: H = UnR

[
Σ�×�

0(nR−�)×�

]
V� =

UnR

[ H�×�
0(nR−�)×�

]
.

4. OPTIMAL PAIR OF PRECODER AND DECODER

Having solved the optimal decoderG in Section 3 for the optimization prob-
lem (13), it remains to derive its optimal precoder F , which is our aim in this
section. We will explore more structures of the optimal precoder to derive the
corresponding decoders to attain the maximual mutual information between
input and output. Like [6] we will use the power of the matrix variational
inequality machinery in tandem with genius matrix partition.
Using (16), the optimal problem (13) reduces to the following optimization
problem in the precoder variable F :

max
F,〈FR�FH〉≤PT

log det(InT + FR�F
HHHR−1

nR
H). (23)

We now derive the optimal solution of (23) in closed-form.
De ne h = rank(H). Using SVD

HHR−1
nR
H = UHHΣUH (24)

with UH ∈ MnT and Σ ∈ DnT with diagonal elements in a decreasing
order

Σ = diag [ Σh 0nT−h ] ∈ RnT×nT , 0 < Σh ∈ Dh, (25)

problem (23) can be rewritten as

max
〈FR�FH〉≤PT

log det(InT +Σ
1
2 FR�F

HΣ
1
2 ), (26)

with F ← UHF . Like [6], it can be shown that the optimal solution to

problem (26) must have the structure F =
[

Fh�
0(nT−h)×�

]
, i.e. according to

the variable change in (26), the optimal solution of problem (23) must admit
the form

F = UHH

[
Fh�

0(nT−h)×�

]
= UHH [1 : h, :]Fh�, (27)

where UH(1 : h, :) is the h rst rows of UH .
Hence, the problem (26) is in fact the following

max
〈Fh�R�FHh�〉≤PT

log det(Ih +Σ
1/2
h
Fh�R�F

H
h�Σ

1/2
h
). (28)

For the case � ≤ h, using the following SVD [4, Th. 7.4.5, p. 414]:

ΣhFh�R�F
H
h�Σh = Udiag [Dx 0h−� ]UH , (29)

with U ∈ Mh, 0 ≤ Dx ∈ D�, the problem (28) is rewriten as

max
(U,Dx)∈Fh,�

log

�∏
i=1

(1 +Dx(i, i)) (30)

where Fh,� = {(U,Dx) : U ∈ Mh, Dx ∈ D�,
〈Σ−1
h
Udiag [Dx 0h−� ]UH〉 ≤ PT }. A variational matrix result yields

that the optimal solution (U,Dx) of (30) must satisfy

〈Σ−1
h
Udiag [Dx 0h−� ]UH〉 = min

Ũ∈Mh

〈Σ−1
h
Ũdiag [Dx 0h−� ] ŨH〉.
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Using [6, Lemma 1] we obtain

min
Ũ∈Mh

〈Σ−1
h
Ũdiag [Dx 0h−� ] ŨH〉 =

�∑
i=1

Σ−1
h
(i, i)Dx(τ(i), τ(i)),

(31)
where τ : {1, 2, ..., �} → {1, 2, ..., �} is a one-to-one map that arranges
{Dx(τ(i), τ(i))} in deceasing order.
Thus problem (30) is reduced to

max
Dx(i,i)

log

�∏
i=1

(1 +Dx(i, i)) :

�∑
i=1

Σ−1
h
(i, i)Dx(i, i) ≤ PT (32)

because the water- lling structure of the optimal solution of the latter, i.e

Dx(i, i) = (μΣh(i, i)− 1)+, i = 1, 2, ..., � (33)

is already in decreasing order.
In other words, U = Ih in (29) and (30), while μ is chosen so that
�∑
i=1

Σ−1
h
(i, i)Dx(i, i) = PT .

Thus, in view of (29), (32), the optimal solution Fh� of the optimization
problem (28) in the case � ≤ h is

Σ
1/2
h
Fh�R

1/2
�

=

[
Dx

0(h−�)×�

]

⇔ Fh� =

[
Σ
−1/2
h

[1 : �]
√
DxR

−1/2
�

0(h−�)×�

]
, (34)

where Σ−1/2
h

[1 : �] is the diagonal matrix consisting of the � rst diagonal

elements of Σ−1/2
h

. Then according to (27) the optimal solution F of the
optimization problem (23) is

F = UHH (1 : �, :)Σ
−1
h

√
DxR

−1/2
�

, (35)

where UH(1 : �, :) is the rst � rows of UH .
Analogously, for the case � ≥ h, the optimal solution F of the optimization
problem (23) is

F =
[
UHH (1 : h, :)Σ

−1
h

√
Dx 0h×(�−h)

]
R
−1/2
� (36)

Based on (35) and (36), we can state the following theorem to recap our
results in this section.

Theorem 5 With the SVD (24), (25) and the diagonal matrixDx de ned by
(33), the optimal precoder F of the problem (23) is given by

F =
[
UHH (1 : L)Σh(1 : L)

−1√Dx OL×(�−L)
]
R
−1/2
�

, (37)

where L = min{�, h} and UH(1 : L, :) is the rst L rows of UH while
Σh(1 : L) is the rst L rows/columns of Σh.

5. SIMULATION RESULTS

We now present simulation results to illustrate the performance of our solu-
tions for frequency selective fading channels with various ranks of the chan-
nel matrix.
The channel taps are uncorrelated complex Gaussian random variables, i.e.
Rayleigh fading channel. Each realization of the channel is assumed known
at the transmitter and receiver. The linear precoder F and decoder G are
optimized for each channel realization. The signal vectors x used in the
simulations are drawn from the quadrature phase shift keying (QPSK) con-
stellation {±1± j}, correlated with covariance R�. The additive noise vec-
tors n are correlated complex Gaussian random variables with covariance
RnR . The total transmit power across all transmit antennas is normalized
to unity, i.e. 〈FR�FH〉 = 1. The signal to noise ratio (SNR) is de ned
as SNR = 〈FR�FH〉/〈RnR 〉1/〈RnR 〉, which does not include possible
gain/attenuation of the channel realization. In our simulations, the channel
matrixH is normalized so that 〈HHH〉 = 1. A system of nT = 2 transmit
and nR = 2 receive antennas is considered. The channel order is L = 3.

Each block of input signal x ∈ C10 is precoded as z = Fx ∈ C14. To avoid
interblock interference, we use the following transmission scheme. Let z1
and z2 denote the L-zero appended versions of the rst half and the last half
of z respectively, speci cally: z1 = [z(1), . . . , z(7), 0, . . . , 0]T ∈ C10

and z2[z(8), . . . , z(14), 0, . . . , 0]T ∈ C10. The elements of z1 are sent to
the rst antenna and the elements of z2 to the second antenna. The noise-
corrupted received vector y = HFx + n is then used for decoding at the
receiver. Note that the channel matrix H ∈ C20×14 in this case is H =[
H11, H21
H12, H22

]
whereHij ∈ C10×7 is channel matrix of the transmis-

sion link between the ith transmit antenna and the jth receive antenna. Two
cases of the channel matrix rank: rank = 14 and rank = 7 are investigated.
As for the case of rank(H) = 7, we let h11 = h12 = h21 = h22. The
same signal and noise covariance matrices as in the at fading channel case
are used. The information rate is given in Figures 1.
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Fig. 1. Information rate for frequency-selective fading channel
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