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ABSTRACT

In Space Time Block Coded (STBC) MIMO-OFDM, most receivers
assume the channel noise to be Gaussian, this paper considers the
semi-blind detection of symbols in non-Gaussian channels. Our aim
is to introduce a new receiver for STBC MIMO-OFDM transmis-
sion over Rayleigh fading channels using Zernike moments which
apply either k-Nearest Neighbor (KNN) or Support Vector Machine
(SVM) for classi cation. The detrimental effects of multipath on the
transmitted symbols are alleviated using invariance to rotation, and
scaling properties of the Zernike moments. The performance of the
new method is shown in symmetric α-stable (SαS) and Middleton
noise environments.

Index Terms— MIMO-OFDM, Zernike moments, support vec-
tor machine, k-nearest neighbor, impulsive noise

1. INTRODUCTION

OFDM coupled with MIMO techniques is an emerging technique
for reliable and high speed wireless communication over frequency-
selective channels. In many communication channels, the observa-
tion noise exhibits impulsive characteristics [1, 2, 3]. Probabilistic
model of additive noise should from one hand describe the fact that
background noise described by normal probability density function
(PDF); and from the other hand that, there are moments of time when
noise is increased considerably impulsive. The sources of impulsive
noise in MIMO-OFDM can be: industrial noise, frequency hopping
and ultra-wide band interference, pulsed jamming; therefore inten-
sive investigations are carried out to determine an ef cient detector
in a non-Gaussian noise, and it is made an urgent task for STBC
MIMO-OFDM systems; especially in a very heavy tailed noise envi-
ronments. However, it has not yet been determined which impulsive
noise model best approximates the most important characteristics of
naturally occurring impulsive noise. Moreover, the suitable detector
and its performance in impulsive noise environment is not speci ed
either. But, the most commonly used models also veri ed in the-
ory and practice are the Middleton models [1], which is composed
of a Rayleigh distribution for the impulsive amplitude and a pois-
son distribution for the occurrence of the impulses. On the other
hand, it has been suggested [3] that the family of α-stable random
variable also provides useful models for impulsive phenomena. In
[4, 5], receiver design for MIMO-OFDM systems is considered and
the noise in such systems is Gaussian. In [6], the receiver design for
MIMO systems in a mixture of Gaussian noise and α-stable noise is
examined. STBCMIMO-OFDM signal detection in impulsive noise
environments is under careful scrutiny and a nal decisive detector
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is not proposed yet. In wireless communications, the channel itself
is continually changing due to environmental surroundings, carrier
frequency offsets and the relative speed of the transceivers, etc. The
current STBC MIMO-OFDM [7] assume that a training symbol is
used to obtain the channel state information. The Zernike moments
can provide the suitable properties to resolve the multipath effects
in presence of impulsive noise. In this paper, we consider MIMO-
OFDM systems in an impulsive noise. On the other hand, among all
noise models that have been developed for these systems, Middleton
noise and SαS noise model [1, 3] are prominent because they have
been proven to exist in communications channels in general. In ad-
dition, we propose a receiver using the Zernike moments for blind
detection. The application of Zernike moments makes the receiver
resilient against impulsive noise. The paper is organized as follows:
section 2 contains the signal, channel, and noise model. Section 3
focuses on the receiver structure of MIMO-OFDM systems. Section
4 presents the simulation results and at the end, some concluding
remarks are provided.

2. SYSTEMMODEL

In this paper, we consider Alamouti MIMO-OFDM system. The
bandwidth (B = (1/Ts)) is divided into K equally spaced subcar-
riers at frequencies k�f, k = 0, 1, . . . , K − 1 with �f = B/K
and Ts as the sampling interval. At the transmitter, information bits
are grouped and mapped into complex symbols. According to the
Alamouti code, (X1(k) X2(k)) are transmitted from the two anten-
nas simultaneously during the rst symbol period (p = 1) for each
k. During the second symbol period (p = 2), (−X∗

2 (k) X∗
1 (k))

are transmitted from the two antennas for each k. The IFFT con-
verts each K × 1 complex vector into a time-domain signal and the
copy of the last Ng samples are appended as a pre x (cyclic pre x).
Thus, the length of an OFDM symbol is (K + Ng)Ts. The time-
domain transmitted signals from antenna i during the p-th symbol
period xi

p(n), 0 � n � K + Ng − 1, i ∈ {1, 2}, p ∈ {1, 2} are
expressed as

xi
p(n) =

K−1∑
k=0

si
p(k)ej2πk(n−Ng)/K (1)

where si
p(k) denotes a complex symbol transmitted from the i-th an-

tenna during the p-th symbol period in an Alamouti codeword over
the k-th subchannel. The index for the Alamouti codeword is omit-
ted to keep the notation simple.
The signals from the two transmit antennas go through independent
channels. The wireless channel can be described as L resolved mul-
tipath components � ∈ {0, 1, . . . , L − 1}, each characterized by

III ­ 3211­4244­0728­1/07/$20.00 ©2007 IEEE ICASSP 2007



an amplitude hi,j
p (n, �) and a delay �Ts, where hi,j

p (n, �) stands for
the �-th resolved multipath component amplitude between the i-th
transmit antenna and the j-th receive antenna at time n(sample in-
dex) during the p-th symbol period. The maximum delay spread of
the two channels is assumed to be the same and equal to (L − 1)Ts.
The received signals during an Alamouti codeword period are

rj
p(n) =

2∑
i=1

L−1∑
�=0

hi,j
p (n, �)xi

p(n − �) + ηj
p(n), p ∈ {1, 2} (2)

where ηp(n) is a circularly symmetric zero-mean white complex
Gaussian random process. It can be observed that the received sig-
nals are a superposition of signals from the two transmit antennas. If
the CP lengthNg is longer than L−1, the received signals (2) (after
removing the pre x) can be considered as the circular convolution
result of the transmitted signals (1) and the channel. Consequently,
the demodulated signals in the frequency domain via the FFT are
expressed as

uj
p(k) � (uj

p)k =

2∑
i=1

K−1∑
m=0

si
p(m)ai,j

p (k, m) + vj
p(k)

uj
p � [uj

p(0), uj
p(1), . . . , uj

p(K − 1)]T (3)

where

ai,j
p (k, m) �

L−1∑
�=0

Hi,j
p,�(k − m)e−j2πm�/K (4)

Hi,j
p,�(k − m) � 1

K

K−1∑
n=0

hi,j
p (n, �)e−j2π(k−m)n/K . (5)

The notation Hi,j
p,�(k − m) represents the FFT of the �-th multipath

component between the i-th transmit antenna and the j-th receive an-
tenna during the p-th symbol period. The overall goal of this paper is
to nd an effective strategy to detect si

p = [si
p(0), si

p(1), . . . , si
p(K−

1)]T in presence of complex impulsive noise vj
p = [vj

p(0), vj
p(1), . . .

, vj
p(K − 1)]T .

2.1. Noise Models

By in large, almost all STBC MIMO-OFDM systems designs and
analysis’s are developed for Gaussian noise vj

p, however, the com-
munication system observations and analyzes provide accurate ex-
amples where this assumption is invalidated [1], the non-Gaussianity
could lead to performance degradation worse than Gaussian ones,
hence a non-Gaussian noise model is required for a realistic ap-
proach. The noise between transmit-receive antenna pair can be
either SαS impulsive noise and or middleton’s class noises, Gaus-
sianity is a subcategory both of these models. In the case of SαS
noise, the elements of vj

p are modeled as independently and iden-
tically distributed complex SαS random variables. that is ∀ vj

p(k),

vj
p(k) = �(vj

p(k))+j�(vj
p(k)), in which�(vj

p(k)),�(vj
p(k)) obey

the bivariate joint SαS distribution. α ∈ (0, 2] is called character-
istic exponent, which controls the heaviness of the tails of the stable
density and hence implies the impulsiveness of the respective SαS
noise [3]. The dispersion parameter plays an analogous role to the
variance of Gaussian distribution. Non-Gaussian impulsive noise is
known to be one of the major sources of errors in digital transmis-
sion systems. Therefore, a more realistic noise model might be an
additive mixture of Gaussian thermal noise and non-Gaussian impul-
sive noise. One of the models that has been proposed to meet these

requirements is the general model derived by Middleton. According
to the relation between the durations of the noise impulses and the
spectral bandwidth of the receiver, Middleton derived three general
classes of the impulsive noise: class A, B, and C [1]. In this paper,
we use a class-A impulsive noise model because it is known to t
closely a variety of non-Gaussian noise and also it is an analytically
tractable model of Gaussian/non-Gaussian noise. Moreover, through
some experimental measurements, the actual impulsive noise sup-
ports the Middleton canonical class-A model. The class-A impulsive
noise model of Middleton is a generalized model of the Gaussian
noise combined with a non-Gaussian impulsive noise. Further de-
tails of this model are found in [1, 8]. The importance of such
model lies in their application to the fundamental signal processing
problems of telecommunications in-the-large, which includes radio,
radar, sonar, etc.

3. RECEIVER STRUCTURE

Multipath communication channels have destructive effects on data.
As a result, they cause undesired variations of phase angle and am-
plitude of data. Zernike and pseudo-Zernike moments are the best
in terms of information redundancy and noise sensitivity [9]. The
Zernike moments achieve the desirable invariance to unknown phase
angle, and can be made scale and translation invariant as well; by
rst scale and translation normalizing the original symbols such that
they are of the same dimension and their centroids are positioned at
the origin. These moments are obtained once the orthogonality and
the invariance properties are considered simultaneously [9]. Another
feature of interest about these moments is the dependence on SNR.
The classi cation method is again based on computing Zernike mo-
ments of the output of the demodulator (Ẑpq) and comparing these
moments with the predetermined moments Zpq for each class us-
ing the k-Nearest Neighbor (KNN) classi er [10] or Support Vec-
tor Machine (SVM) classi er [11]. The rst classi er is suitable
for data streams. When a new sample arrives, KNN nds the k-
neighbors nearest to the new sample from the training space based
on some suitable similarity or distance metric. KNN classi er de-
pends on nding the feature vector of minimum distance to the un-
known feature vector. In KNN, k is a predetermined value. The
k-nearest neighbors to the unknown feature vector; transmitted sym-
bol, are found, and the vote of each class is assigned to the number
of neighbors they have. The classi cation result is the class which
has the maximum vote of k-nearest neighbors. The plurality class
among the nearest neighbors is the class label of the new sample. A
common similarity function is based on the Euclidian distance be-
tween two data tuples. For two tuples, ζ = 〈ζ1, ζ2, . . . , ζn−1〉 and
ξ = 〈ξ1, ξ2, . . . , ξn−1〉 (excluding the class labels), the Euclidian
similarity function is

d2(ζ, ξ) =

√√√√n−1∑
i=1

(ζi − ξi)2. (6)

The second classi er is primarily a method that performs classi ca-
tion tasks by constructing hyperplanes in a multidimensional space
that separates cases of different class labels. By in large, the joint
resulting effect of multipath and noise can transform the transmitted
signal such that a linear transformation of the received signal can-
not be good classi er. Extracting features from possible transmitted
signals can be utilized to de ne vectors in the feature space, then hy-
perplane that divides clusters of vector could be found, so that data
with one category of the target variable are on one side of the plane

III ­ 322



and the data with another category are on the other side of the plane.
Besides of separating the data into different categories, the objec-
tive of SVM is to nd an optimal hyperplane that correctly classi es
the data as much as possible and separates the data as far as possi-
ble. The Alamouti receiver resembles a pattern recognition problem,
by using Zernike moments as the feature vectors. The magnitude
of the computed Zernike moments are rotation invariant [9], this is
specially important since the channel can rotate the transmitted sym-
bols. Therefore, the phase of transmitted and received symbols are
unaffected via the Zernike moments. This rotation invariance prop-
erty takes care of the random phase shift imposed on the incoming
signals through the multipath channel. On the other hand, scale in-
variance property inherited in Zernike moments would compensate
for the random attenuation imposed on the transmitted data. In ab-
sence of the noise term vj

p in (3) we have perfect detection.

3.1. Zernike Moments

The Zernike polynomials were rst proposed in 1934 by Zernike.
Zernike moments have proven to have rotation invariant property [9],
which can be useful in classi cation of space-time codes. Complex
Zernike moments are constructed using a set of complex polynomi-
als which form a complete orthogonal basis set de ned on the unit
disc (x2 + y2) � 1. They are expressed as Zpq, two dimensional
Zernike moment, for Alamouti receiver using (3):

Zpq =
p + 1

π

∫
x

∫
y

u(x, y)V
∗

pq(x, y)dx dy (7)

where p = 0, 1, 2, . . . ,∞ de nes the order, 0 � |q| � p and p−|q|
is even. In our circumstance, we use the sampled version of (7) in
maximum likelihood sense

Ẑpq =
p + 1

π

∑
x

∑
y

u(x, y)V
∗

pq(x, y). (8)

The Zernike polynomials Vpq(x, y) expressed in polar coordinates
are:

Vpq(r, θ) = Rpq(r)e
jqθ (9)

where (r, θ) are de ned over the unit disc,
√

j = −1 and the orthog-
onal radial polynomial, Rpq(r), is given as follows:

Rpq(r) =

p−|q|
2∑

s=0

(−1)s (p − s)!

s!( p+|q|
2

− s)!( p−|q|
2

− s)!
rp−2s (10)

u(x, y) in (8) is the value of the output of demodulator for com-
puting Ẑpq , and it is the value of constellation point for computing
Zpq . To help reduce computation complexity, it may prove useful to
express the Zernike moments in terms of Cartesian moments [12].
This removes the need for the polar mapping of the data, while also
removing the dependence on the trigonometric functions. Alterna-
tively, expressing Cartesian moments in this way would aid the selec-
tion of less correlated descriptors. This conversion can be achieved
by slightly rearranging the Zernike moment equation. By substitut-
ing k = p − 2s and rearranging Rpq(r), we have:

Rpq(r) =

p∑
k=q

Bpqkrk, (p − k) is even, q � 0 (11)

where

Bpqk =
(−1)(p−k)/2( p+k

2
)!

( p−k
2

)!( k+q
2

)!( k−q
2

)!
(12)

Using this manipulated form of the radial polynomials produces Zernike
moment de nitions (in continuous form) of:

Zpq =
p + 1

π

p∑
k=q

Bpqk

∫ 2π

0

∫ 1

0

rke−jqθu(r, θ) r dr dθ (13)

which when translated to Cartesian coordinates is:

Zpq =
p + 1

π

p∑
k=q

Bpqk

∫
x

∫
y

(x − jy)q(x2 + y2)(k−q)/2u(x, y) dx dy (14)

Translation and scale invariants of Zernike moments can normally
be achieved by moving the centroid of the received MIMO-OFDM
data to the origin of unit circle and by enlarging or reducing the
mass of received data from (3) to the predetermined level respec-
tively [9]. The Zernike moments with higher order save more detail
features of the transmitted signal and therefore an effective index to
combat noise and multipath. However, higher order increases com-
putational cost. However, this conventional normalization technique
can introduce errors and hence does not produce the desired invari-
ances. In classifying the transmitted symbols, size of the received
data may vary and this has an impact on the moment calculations.
By assuming that the transmitted symbols are scaled uniformly with
an equifactor of β from two antennas, the scaled Zernike moments;
used in (6) for predetermined Zpq in transmitter, and for classi ca-
tion Ẑpq in the receiver, are

Z̃pq =
p + 1

π

p∑
k=q

Bpqk

∫ 2π

0

∫ 1

0

r̃ke−jqθu(r̃, θ)r̃dr̃ dθ, r̃ = βr,

(15)
β amounts to the equivalent attenuation imposed onto the transmit-
ted symbols via multipath fading channel. In other words, β is the
uniform scale factor that scaled the original symbol constellation to
the noise and multipath infected constellation illustrated through (3).
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Fig. 1. Comparison between the new method and the method based
on STBC orthogonality [13] in various noise.

Next we perform some simulations to validate the effectiveness
of the Zernike moments for detection of transmitted symbols.
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Fig. 2. BER performance of STBC MIMO-OFDM system with var-
ious modulation using Zernike moments.
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Fig. 3. The effect of multipaths in BER performance of STBC
MIMO-OFDM system using Zernike moments.

4. SIMULATION RESULTS

We simulate a 2× 2MIMO-OFDM system under Rayleigh at fad-
ing channel. The coding scheme is based on Alamouti method. The
number of multipaths is L = 64, with equal power strength. The
packet size is ve OFDM symbol, consisting ofK = 64 subcarriers.
The characteristic exponent of the complex SαS impulsive noise is
set to 1.5 and its dispersion is equal to the variance of the Gaussian
noise. The impulsive index [1, 8] in middleton noise is A = 0.3.
Fig. 1 is the comparison between BER performance of our approach
and the method based on STBC orthogonality in various noise[13].
In this simulation, QPSK is used as the subcarrier modulation and
Gaussian kernel function [14] is used in Support Vector Machine
(SVM) classi er. As it is clear, g. 1 shows better performance of
our approach. Fig. 2 shows BER performance for various subcarrier
modulation that uses k-Nearest Neighbor classi er. The effect of
multipaths in BER performance of this system for QPSK subcarrier
modulation in Middleton noise is shown in g. 3. The performance

of the system is delicately tangible while the number of multipaths
is going up, this gure specially signi es the robustness of utilizing
Zernike moments in highly multipath environment.

5. CONCLUSION

In this paper we have considered the receiver design of MIMO-
OFDM systems in impulsive noise modeled as a symmetric α-stable
(SαS) noise and Middleton noise. We propose a receiver that uses
Zernike moments for symbol detection. Zernike moments which are
based on orthogonal polynomials in two dimensions are invariant to
rotation, scaling, and translation and they are able to challenge de-
structive nature of channel. Simulations show the proposed receiver
can achieve better performance than STBC receiver.
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