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ABSTRACT

In this paper, the conditions for blind identifiability from second or-
der statistics (SOS) of multiple-input multiple-output (MIMO) chan-
nels under orthogonal space-time block coded (OSTBC) transmis-
sions are studied. The main contribution of the paper is to show
that, assuming more than one receive antenna, any OSTBC with a
transmission rate higher than a given threshold, which is inversely
proportional to the number of transmit antennas, permits the blind
identification of the MIMO channel from SOS. Additionally, some
previous identifiability results have been extended. The implications
of these theoretical results include the explanation of previous simu-
lation examples found in the literature and, from a practical point of
view, they show that the only non-identifiable OSTBC codes with
practical interest are the Alamouti codes and the real square ortho-
gonal design with four transmit antennas. Further discussion and
empirical analysis are also provided.

Index Terms— Orthogonal space-time block codes (OSTBC),
multiple-input multiple-output (MIMO) communications, blind iden-
tifiability, second-order statistics.

1. INTRODUCTION

In the recent years, space-time block coding (STBC) has emerged
as one of the most promising techniques to exploit spatial diver-
sity in multiple-input multiple-output (MIMO) systems. Among the
space-time coding schemes, the orthogonal space-time block coding
(OSTBC) is one of the most attractive because it is able to provide
full diversity gain with very simple encoding and decoding. The
special structure of OSTBCs implies that the optimal maximum li-
kelihood (ML) decoder is a simple linear receiver, which can be seen
as a matched filter (MF), followed by a symbol-by-symbol detector.
When the channel state information (CSI) is not available at the re-
ceiver, training approaches can be used to obtain an estimate of the
channel. However, the price to be paid is reduced bandwidth effi-
ciency, and even inaccurate channel estimates due to the effect of the
noise and the limited number of training symbols. Popular approa-
ches to avoid the reduction on the bandwidth efficiency include the
so-called differential space-time coding schemes [1], which incur a
penalty in performance of 3-dB.

Recently, several methods for blind channel estimation or blind
decoding have been proposed. These methods can be divided in two
groups depending on whether they exploit the higher-order statistics
(HOS) or the second-order statistics (SOS) of the signals. The main
advantage of SOS-based methods [2–5] is their low complexity, but
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it is well known that there are several OSTBCs (including the Ala-
mouti code [6]) which do not permit the blind channel identification.
There are some partial identifiability results in the literature [5,7,8],
but, to the best of our knowledge, the identifiability conditions still
remain unclear. The main goal of this paper is to fill this gap by pre-
senting, in a unified manner, some new results regarding the blind
identifiability conditions of OSTBCs.

The main contribution of this work is based on the definition of
identifiable and non-identifiable OSTBCs, and consists on the claim
that any OSTBC transmitting at a rate higher than a given threshold,
which is inversely proportional to the number of transmit antennas,
permits the blind channel identification for any number of receive
antennas nR > 1. Additionally, we have found that any OSTBC
transmitting an odd number of real symbols permits the blind iden-
tification of the MIMO channel regardless of the number of receive
antennas, which extends to complex OSTBCs the first result in [5].
Moreover, it has been proven that any real OSTBC with an odd num-
ber of transmit antennas is identifiable, which explains some of the
numerical examples in [7].

The implications of these results include the explanation of the
simulation examples in [4]; the generalization of the identifiability
conditions in [5] and [7], and the proof that the only non-identifiable
OSTBCs with practical interest are the Alamouti code and the real
code with nT = 4 transmit antennas and transmission rate R = 1.

2. SOME BACKGROUND ON OSTBCS

2.1. Notation

Throughout this paper we will use bold-faced upper case letters to
denote matrices, e.g., X, with elements xi,j ; bold-faced lower case
letters for column vector, e.g., x, and light-faced lower case letters
for scalar quantities. The superscripts (·)T and (·)H denote trans-
pose and Hermitian, respectively. The real and imaginary parts will

be denoted as �(·) and �(·), and superscript (̂·) will denote es-
timated matrices, vectors or scalars. The trace, range (or column
space) and Frobenius norm of matrix A will be denoted as Tr(A),
range(A) and ‖A‖, respectively. Finally, 0 will denote the zero
matrix, Ip will denote the identity matrix of size p (although the su-
bindex will be omitted if it is not necessary), and �q� will denote the
smallest integer greater or equal than q.

A flat fading MIMO system with nT transmit and nR receive an-
tennas is assumed during the paper. The nT × nR complex channel
matrix is H = [h1 · · ·hnR ], where hj = [h1,j , . . . , hnT ,j ]

T con-
tains the channel response associated with the j-th receive antenna,
and hi,j denotes the channel response between the i-th transmit and
the j-th receive antennas. The complex noise at the receive antennas
is considered both spatially and temporally white with variance σ2.
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2.2. Data Model for STBCs

Let us consider a space-time block code (STBC) transmitting M
symbols during L slots and using nT antennas at the transmitter side.
The transmission rate is defined as R = M/L. Let us also define the
vector s[n] = [s1[n], . . . , sM′ [n]]T containing the M ′ real informa-
tion symbols transmitted in the n-th block, where M ′ = M for real
STBCs and M ′ = 2M for complex STBCs. For a STBC, the n-th
block of data can be expressed as

S[n] =
M′∑
k=1

Cksk[n],

where Ck ∈ C
L×nT , k = 1, . . . , M ′, are the STBC code matrices.

In the case of real STBCs, the transmitted matrix S[n] and the code
matrices Ck are real.

The combined effect of the STBC and the j-th channel can be
represented by the L × 1 complex vectors wk(hj) = Ckhj , and
defining the real vectors ỹj [n] = [�(yj [n])T ,�(yj [n])T ]T and

w̃k(hj) =
[�(wk(hj))

T ,�(wk(hj))
T
]T

, where yj [n] denotes
the received signal at the j-th antenna, we can write

ỹj [n] =
M′∑
k=1

w̃k(hj)sk[n] + ñj [n] = W̃(hj)s[n] + ñj [n],

where W̃(hj) = [w̃1(hj) · · · w̃M′(hj)], and ñj [n] is the real noise
of variance σ2/2. Finally, stacking all the received signals into

ỹ[n] =
[
ỹT

1 [n], . . . , ỹT
nR

[n]
]T

, we can write

ỹ[n] = W̃(H)s[n] + ñ[n],

where W̃(H) =
[
W̃T (h1) · · ·W̃T (hnR)

]T

, and ñ[n] is defined

analogously to ỹ[n].

In the case of orthogonal STBCs (OSTBCs), the matrix W̃(H)
satisfies [1]

W̃T (H)W̃(H) = ‖H‖2I, (1)

which reduces the complexity of the coherent maximum likelihood
(ML) decoder to find the closest symbols to the estimated signal

ŝML[n] =
W̃T (H)ỹ[n]

‖H‖2
,

i.e., the OSTBC-MIMO channel response vectors w̃k(hj) can be
seen as the ML equalizers.

3. BLIND IDENTIFIABILITY OF OSTBC-MIMO
CHANNELS

Recently, several methods for blind identifiability of OSTBC chan-
nels based on SOS have been proposed [2–5]. However, the iden-
tifiability conditions in [2–5] are related to the specific estimation
criteria proposed in these works, and not to the blind channel esti-
mation problem, which sometimes yields contradictory results. Furt-
hermore, the relationship between the identifiability conditions asso-
ciated to each of the proposed methods and the underlying structure
of the OSTBC remains unclear.

In this section, the identifiability condition for the blind esti-
mation of OSTBC-MIMO channels is studied, pointing out that it
coincide with that of the method proposed in [4].

Let us start by introducing the following definition:

Definition 1 (Non-identifiable OSTBC-MIMO channels) The set
given by an OSTBC code and a MIMO channel H is said to be a non-
identifiable OSTBC-MIMO channel if there exists a channel Ĥ �=
cH, with c a real constant, such that, for all s[n], we can find a
signal ŝ[n] �= c−1s[n] satisfying

ỹ[n] = W̃(H)s[n] + ñ[n] = W̃(Ĥ)ŝ[n] + ñ[n]. (2)

Otherwise the OSTBC-MIMO channel is said to be identifiable.

The above definition states that, if the observation vectors ỹ[n]
can be due to several combinations of signals ŝ[n] and MIMO chan-

nels Ĥ (not related by a real scale factor), then the channel (or signal)
can not be identified without exploiting other properties of the sour-
ces such as their belonging to a finite alphabet, or a source corre-
lation matrix with different eigenvalues [2, 4, 9]. Furthermore, we
must note that the real scalar (c) ambiguity will be always present in
the blind decoding process, then, from now on we can assume that

‖Ĥ‖ = ‖H‖ = 1. From (2) it is easy to obtain

ŝT [n]

‖ŝ[n]‖W̃T (Ĥ)W̃(H)
s[n]

‖s[n]‖ = 1,

and since the above equality must be satisfied for all s[n], we have
the following ambiguity condition

W̃T (Ĥ)W̃(H) = Q, (3)

where Q is an orthogonal (i.e., real and unitary) matrix. Here, taking

into account ‖Ĥ‖ = ‖H‖ = 1 and (1), we can find that (3) is
equivalent to

range
(
W̃(H)

)
= range

(
W̃(Ĥ)

)
,

which is the ambiguity condition associated to the technique propo-
sed in [4] (see also [9]). Thus, if the OSTBC channel can be iden-
tified from SOS with the only ambiguity of a real scale factor, the
estimate can be obtained by means of the technique proposed in [4],
which is equivalent to the relaxed blind ML estimator

argmin
Ĥ;ŝ[n]

N−1∑
n=0

‖ỹ[n] − W̃(Ĥ)ŝ[n]‖2,

where N is the number of available blocks at the receiver.

4. NEW RESULTS ON BLIND IDENTIFIABILITY OF
OSTBC-MIMO CHANNELS

In the previous section we have presented the general identifiabi-
lity condition for SOS-based blind identification of OSTBC-MIMO
channels. However, the relationship with the underlying OSTBC
structure remains unclear. In this section we present some new blind
identifiability results which are directly related with the main OSTBC
properties. Let us start by introducing the following definitions:

Definition 2 (Identifiable OSTBCs) An OSTBC is said to be iden-
tifiable iff there exists at least one channel H such that the associated
OSTBC-MIMO channel is identifiable.

Definition 3 (Non-identifiable OSTBCs) An OSTBC is said to be
non-identifiable iff, for all H, the associated OSTBC-MIMO channel
is non-identifiable.
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Constellation nT M L R = M/L Rth Identifiable Design Multiplicity (nR = 1) Multiplicity (nR > 1)
real 2 2 2 1 2 No Alamouti 2 2
real 3 4 4 1 1 Yes gen. ort 2 1
real 4 4 4 1 1 No gen. ort 4 4
real 5 8 8 1 2/3 Yes gen. ort 2 1
real 6 8 8 1 2/3 Yes gen. ort 2 1
real 7 8 8 1 1/2 Yes gen. ort 2 1
real 8 8 8 1 1/2 Yes gen. ort 2 1

complex 2 2 2 1 1 No Alamouti 4 4
complex 3 4 8 1/2 1/2 Yes gen. ort 2 1
complex 4 4 8 1/2 1/2 No gen. ort 4 4
complex 5 8 16 1/2 1/3 Yes gen. ort 2 1
complex 6 8 16 1/2 1/3 Yes gen. ort 2 1
complex 7 8 16 1/2 1/4 Yes gen. ort 2 1
complex 8 8 16 1/2 1/4 Yes gen. ort 2 1
complex 3 3 4 3/4 1/2 Yes amicable 2 1
complex 4 3 4 3/4 1/2 Yes amicable 2 1
complex 5 4 8 1/2 1/3 Yes amicable 1 1
complex 6 4 8 1/2 1/3 Yes amicable 1 1
complex 7 4 8 1/2 1/4 Yes amicable 1 1
complex 8 4 8 1/2 1/4 Yes amicable 1 1

Table 1. Identifiability characteristics for the most common OSTBCs.

The main identifiability results are given as five Theorems. Due
to the lack of space, we only provide here a sketch of the proofs, and
we refer the interested reader to [10]. The first theorem, which has
also been proven in [8], ensures blind channel identifiability for any
number of receive antennas:

Theorem 1 (See also [8]) If an OSTBC code transmits an odd num-
ber of real symbols (M ′ odd), then the OSTBC-MIMO channel is
identifiable regardless of the number of receive antennas.

Proof 1 The proof is based on the properties of the ambiguity ma-

trix Q = W̃T (Ĥ)W̃(H), which can be rewritten as Q = αI +√
1 − α2Δ, where α = �

(
Tr

(
ĤHH

))
, and Δ = −ΔT is an

orthogonal and skew symmetric matrix. Theorem 1 is a direct con-
sequence of the non existence of orthogonal and skew-symmetric
matrices of odd order [5, 8]. �

The following theorems state sufficient conditions for an OSTBC
to be identifiable:

Theorem 2 All the real OSTBCs with an odd number of transmit
antennas nT are identifiable.

Proof 2 The proof proceeds by contradiction. If the code is non-
identifiable, it is easy to prove that the code matrices must satisfy

⎡
⎢⎣

C1

...
CM′

⎤
⎥⎦ = PQ

⎡
⎢⎣

C1

...
CM′

⎤
⎥⎦ U, (4)

where PQ is an orthogonal and skew-symmetric block matrix cons-
tructed from the elements of Δ and U is a unitary and skew-Hermitian
matrix of order nT . For real OSTBCs the code matrices Ck are real,
and U is real and skew-symmetric of order nT , which implies that
there do not exist non-identifiable real OSTBCs with an odd number
of transmit antennas. �

Theorem 3 If an OSTBC code with nT transmit antennas, and trans-
mitting M ′ real symbols over L slots, is non-identifiable, then its
code rate satisfies

M ′

L
≤ 2⌈

nT
2

⌉ .

Proof 3 Taking into account that the eigenvalues of a unitary and
skew-symmetric matrix only can take the values ±j, and that any
pair of orthogonal skew-symmetric matrices are orthogonally equi-
valent [11], (4) can be rewritten as

Ak

[
jIp 0
0 −jIq

]
= Ak+M′/2, k = 1, . . . , M ′/2,

where p + q = nT and Ak (k = 1, . . . , M ′) are code matrices of
an associated OSTBC obtained from linear operations over the code
matrices Ck (k = 1, . . . , M ′). Now, writing Ak =

[
Fk Gk

]
,

with Fk ∈ C
L×p and Gk ∈ C

L×q , and exploiting the properties
of OSTBC code matrices [1], it is easy to prove that FH

k Fl = 0,
GH

k Gl = 0, for k, l = 1, . . . , M ′/2, k �= l. This implies

M ′ �nT /2� ≤ M ′ max(p, q) ≤ 2L,

and concludes the proof. �

From Definition 2, we know that for any identifiable OSTBC
there exists at least one channel H such that the OSTBC-MIMO
channel is identifiable. The following theorem extends this result to
all the full row rank channel matrices

Theorem 4 Given an identifiable OSTBC and a full row rank chan-
nel matrix H (nR ≥ nT ), the associated OSTBC-MIMO channel is
identifiable.

Proof 4 The proof proceeds by contradiction. It is obvious that if
H can not be identified, then any linear combination HV provides a
non-identifiable OSTBC-MIMO channel. Since H is full row rank,
all the possible channels can be written as HV for some V. Then,
if H can not be identified, the OSTBC is non-identifiable. �

The above theorem constitutes a sufficient condition for blind
channel identifiability based on SOS. However, simulation results
have shown that the full row rank condition on the channel matrix is
not necessary for channel identification (see Section 5 and [4]). In
order to extend the result of Theorem 4 we introduce the following
conjecture, which has been validated by means of numerical results

Conjecture 1 Let us consider an identifiable OSTBC and a multiple-
input single-output (MISO) channel h1 (nR = 1), then, the MISO
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channels ˆ̃
h1 =

[
�(ĥT

1 ),�(ĥT
1 )

]T

satisfying (3) belongs to a subs-
pace of dimension less or equal than 2 with probability one.

Finally, the following theorem ensures the blind identification
for almost all the channels with nR > 1.

Theorem 5 Given an identifiable OSTBC and a MIMO channel H
with nR > 1, then, the associated OSTBC-MIMO channel is identi-
fiable with probability 1.

Proof 5 The proof is based on Conjecture 1. Considering an identi-
fiable OSTBC, there does not exist any ambiguity matrix Q �= I sa-
tisfying (3) for all H. Then, taking into account that Q is fixed by the
first MISO channel, the OSTBC-MIMO channel is non-identifiable
iff h̃2 belongs to the subspace of channels with associated ambiguity
matrix Q, which happens with probability zero. �

5. FURTHER DISCUSSION AND EMPIRICAL ANALYSIS

The combination of Theorems 2, 3 and 5 allow us to explain pre-
vious results obtained by others authors. Table 1 shows the main
results in [4], where we have added a column with the transmission
rate R = M/L and the threshold derived from Theorem 3. As can
be seen, any OSTBC transmitting at a rate R > Rth permits the
channel identification with nR > 1 receive antennas, as predicted
by Theorems 3 and 5. Furthermore, we must note that the condi-
tion on the transmission rate is very restrictive and there are only six
OSTBC examples with R ≤ Rth, which are the following:

• Alamouti codes: As pointed out in [2], it is impossible to
achieve blind identification for the Alamouti code without as-
suming a correlation matrix Rs with non-equal eigenvalues.

• Real OSTBC (nT = M = L = 4): Analogously to the
Alamouti code, this is a non-identifiable code with practical
application.

• Real OSTBC (nT = 3, M = L = 4): In this case, Theorem
2 implies that the code is identifiable, and Theorem 5 explains
the blind identifiability of the channel with nR > 1.

• Complex OSTBCs (nT = 3, 4, M = 4, L = 8): These co-
des have not practical interest due to the existence of OSTBCs
with the same number of antennas (nT ), a lower delay (L),
and a higher transmission rate (R).

From the above results, and taking into account that the thres-
hold in the transmission rate decreases rapidly with nT , we can state
that the only non-identifiable OSTBCs with practical interest are the
Alamouti code and the real orthogonal design with nT = M =
L = 4. Furthermore, we must note that the obtained theoretical and
empirical results ensure that certain OSTBCs, such as the real and
complex codes with M = nT = 8, are identifiable, which contra-
dices the identifiability condition stated in [3]. Furthermore, in [5]
the authors claim that the MIMO channel can not be identified when
using the complex OSTBC with nT = 3, M = 4, L = 8. The obtai-
ned theorems proves the identifiability of this code and validate the
empirical results in [4] and Table 1.

Finally, we must point out that the study of SOS blind chan-
nel identifiability of OSTBC systems is still an open issue. Further
lines include the derivation of necessary identifiability conditions,
the proof of Conjecture 1 (which has been validated by means of
numerical examples), and the derivation of tighter transmission rate
thresholds for non-identifiable real OSTBCs.

6. CONCLUSIONS

In this paper we have presented identifiability conditions for blind
multiple-input multiple-output (MIMO) channel identification based
on second order statistics (SOS) of orthogonal space-time block co-
ded (OSTBC) systems. The analysis, which does not exploit pos-
sible finite alphabet constraints on the information symbols, shows
that, if the OSTBC is identifiable and the number of receive antennas
is greater than one, the MIMO channel can be identified with proba-
bility one. The study reveals that the identifiability characteristics of
OSTBCs are related to their underlying structure. Specifically, we
have derived a threshold on the transmission rate, which is inversely
proportional to the number of transmit antennas, and proved that any
OSTBC with a higher transmission rate is identifiable. Finally, we
have presented additional discussions and validated the obtained re-
sults by means of numerical examples.
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