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Abstract—In this research, we present a joint channel track-
ing and maximal a posteriori (MAP) symbol detection method
for orthogonal frequency division multiple access (OFDMA)
systems in time-varying fading channels. In contrast to some
existing joint estimation and detection schemes that perform
channel tracking in time-domain, we propose an algorithm
that do both channel tracking and symbol detection in fre-
quency domain, thus preventing the performance degradation
due to the multiple access interference present in the time
domain channel estimation. In conjunction with appropriate
frequency allocation for each user, it is shown that a low-
complexity algorithm can be obtained and, in the mean time,
provides good performance in channel tracking.

Keywords— OFDM, OFDMA, EM, MAP, Joint estimation
and detection.

I. Introduction

Orthogonal frequency division multiplexing/multiple ac-
cess (OFDM/OFDMA) are considered promising technolo-
gies for next-generation broadband mobile wireless access
(BMWA) due to their outstanding architecture for multiple
access and making combating severe inter-symbol interfer-
ence (ISI) easy in BMWA. Despite the advantage of OFDM
in combating ISI, the complexity of tracking all frequency-
domain channel parameters of an OFDM system is high,
due to its large number of frequency tones. To reduce the
complexity in channel tracking, for OFDM systems, a com-
mon practice is to perform channel tracking in time-domain
and then transform the time-domain channel estimates back
into frequency-domain for symbol detection, using the fast
Fourier transform (FFT). There has a number of research
results obtained in this regard, among which [1,2], e.g., per-
form channel tracking using hard symbol decision feedbacks
while [3, 4] do it with soft symbol information feedbacks
based on the expectation-maximization (EM) algorithm. It
has been shown in [4, 6], among others, that joint channel
tracking and symbol detection based on the EM algorithm
can outperform algorithms using hard decision feedbacks.

Despite the rich research results in joint channel tracking
and symbol detection for OFDM systems, the idea of per-
forming channel tracking in time-domain for OFDMA sys-
tems is more complicated and may lead to inferior perfor-
mance, due to the severe multiple access interference (MAI)
present in the time-domain received signal. Channel track-
ing in frequency-domain not only shields off the MAI present
in time-domain channel estimation, it also avoids the algo-
rithm complexity resulting from FFT and the suppression
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of MAI and ISI occurring in time-domain signal process-
ing. Based on our previous results in [4, 6], in this research,
we present a frequency-domain joint channel estimation and
symbol detection approach for OFDMA systems and show
that if appropriate frequency allocation can be made for each
user in the system, then a low-complexity algorithm can be
obtained and, in the mean time, provides good performance
in channel tracking and symbol detection.

II. System Model

We consider an OFDMA system where there is a num-
ber of users sharing the available bandwidth of the system.
The number of total subcarriers of the system is denoted by
N and the number of users in the system is K. The mod-
ulated symbols of a user is first put on its designated sub-
carriers and transformed with the inverse fast Fourier trans-
form (IFFT). The resultant signal is then cyclic-prefixed and
transmitted over a time-varying multiple-path fading chan-
nel hk(t) = {hk:0(t), . . . , hk:Lk−1(t)}. The number of chan-
nel taps, Lk, for each user is considered smaller than or equal
to the length of the cyclic-prefix, Lcp, which is a system pa-
rameter designed to combat ISI.

At the receiver, the received time-domain signal col-
lected for the m-th OFDM symbol interval is ym =
{y(m−1)(N+Lcp)+Lcp,··· ,m(N+Lcp)−1)}, after removing the
cyclic prefix. In this research, we assume signal synchro-
nization has been achieved before channel estimation and
symbol detection. Thus, without considering the effects of
frequency and timing offsets, the frequency-domain received
signal vector Ym of dimension N × 1, after the FFT of ym,
is given by

Ym = HmXm + Nm (1)

where Xm is the vector of the frequency-domain transmit-
ted symbols and Hm is the corresponding channel response
in frequency-domain. The noise vector Nm is considered
zero-mean and additive-white complex Gaussian (AWGN)
distributed, and is denoted by CN (0, σ2

nIN ). We note that
in this paper a bold-faced lower-case character x represents
a vector in time-domain, yet an upper-case X stands for a
vector in frequency-domain. In addition, a bold-faced upper-
case X denotes a matrix either in time- or frequency-domain.

In an OFDMA system, a single user is unlikely to oc-
cupy the entire bandwidth of the system. Therefore, with-
out loss of generality, the set of frequency bins allocated
to user K is defined as {f1

k , . . . , fNk

k }, where 1 ≤ f i
k ≤ N

and Nk is the number of bins used by user k. As a re-
sult, the corresponding frequency-domain received signal
and channel response of user k are given, respectively, by
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Yk:m � {Y 1
k:m, . . . , Y Nk

k:m} and Hk:m � {H1
k:m, . . . , HNk

k:m}.
The frequency-domain model for the received signal of user
k is thus expressed as

Yk:m = Hk:mXk:m + Nk:m (2)
where Nk:m ∼ CN (0, σ2

nINk
).

III. Model of the Frequency-Domain Channel

Dynamics

To track the time-varying channel parameters, a model
for the channel dynamics is usually required. A widely
used model for fading channel is the auto-regressive (AR)
model. Define an extended channel vector hk:m−1 �
[hT

k:m−1, · · · ,hT
k:m−Lh

]T , using the AR model, the channel
dynamics is characterized as
hk:m = Fkhk:m−1 + Bkvk:m

� [Fk:1,Fk:2, . . . ,Fk:Lh
]hk:m−1 + Bkvk:m (3)

where Lh is the order of the AR model, and Fk:i and Bk:i are
diagonal matrices of Lk × Lk for wide-sense stationary un-
correlated scattering (WSSUS) fading channels. The noise
vector, vk:m, has the density function of CN (0, ILk

).
The above dynamic model is essentially for channel pa-

rameters in time-domain, i.e. hk:m. Since we are interested
in channel tracking in frequency-domain, a dynamic model
for the fading channel parameters in frequency-domain is
necessary. Denote the FFT matrix of dimension N × N by
WN , it is obvious that the frequency-domain response of
hk:m is given by W̃Lk

hk:m, where W̃Lk
is a sub-matrix of

WN formed from the column 1 to column Lk of WN . How-
ever, only the frequency-domain channel responses used by
user k are interested, to reduced the complexity in channel
tracking, we essentially require a dynamic model for Hk:m.
Let ei

k be a row vector of 1×N with the f i
k-th index equal to

one only and the others zero. If we define a sampling matrix
for user k as Jk � [(e1

k)T , · · · , (eNk

k )T ]T , then we have

Hk:m = JkW̃Lk
hk:m � Wkhk:m (4)

where we have Wk � JkW̃Lk
, which is of dimension Nk×Lk.

We next apply this equation to derive an AR model for Hk:m.
Let Hk:m−1 � [HT

k:m−1, · · · ,HT
k:m−Lh

]T . We define an
AR model for Hk:m as

Hk:m = FkHk:m−1 + BkVk:m (5)
where Fk is of dimension Nk ×NkLh and Bk of Nk ×Nk. It
is obvious that E{Hk:mHH

k:m−1} = FkE{Hk:m−1H
H
k:m−1},

where E{·} stands for expectation. Substituting (4) into
this equation gives

Wk[Rk:1, · · · ,Rk:Lh
](ILh

⊗ WH
k )

= Fk(ILh
⊗ Wk)Rk(ILh

⊗ WH
k ) (6)

where ⊗ stands for the Kronecker product. For WSSUS
channels, Rk:i = E{hk:m−phH

k:m−p±i} is a diagonal matrix,
and Rk = E{hk:m−1h

H
k:m−1} is a block matrix with its sub-

matrix at the i-th row and the j-th column equal to [Rk]i,j =
Rk:|i−j|, i, j = 1, . . . , Lh.

Recall that the dimension of Wk is Nk ×Lk. If Nk > Lk,
then there exists the left inverse of Wk, which is

W†
k � (WH

k Wk)−1WH
k . (7)

In this case, it is straightforward to show that
Fk = Wk[Rk:1, · · · ,Rk:Lh

]R−1
k (ILh

⊗ W†
k) (8)

= WkFk(ILh
⊗ W†

k). (9)
The last equality results from the fact that Fk =
[Rk:1, · · · ,Rk:Lh

]R−1
k , which can be easily verified from

(3). We note that the complexity of R−1
k is actually low

due to the fact the sub-matrix Rk:i of Rk is diagonal,
and thus the sub-matrix of R−1

k is also a diagonal ma-
trix. Moreover, let Rk:i = diag{ri,0, ri,1, · · · , ri,Lk−1}, i =
0, · · · , Lh − 1, and define the sub-matrix of R−1

k to be
Gk:i � diag{gi,0, gi,1, · · · , gi,Lk−1}, it is easy to verify that⎡⎢⎢⎢⎢⎣

g0,j g1,j · · · gLh−1,j

g1,j g0,j · · · ...
...

. . . . . . g1,j

gLh−1,j · · · g1,j g0,j

⎤⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎣
r0,j r1,j · · · rLh−1,j

r1,j r0,j · · · ...
...

. . . . . . r1,j

rLh−1,j · · · r1,j r0,j

⎤⎥⎥⎥⎥⎦
−1

, j = 0, · · · , Lk − 1 (10)

where for Rayleigh fading channels, ri,j = pjJ0(2πifdTs), pj

is the variance of path j, and J0(·) denotes the zeroth-order
Bessel function of the first-kind. Since the channel order
Lh is usually set to be 1 or 2, we can immediately obtain
the coefficients gi,j , i = 0, · · ·Lh − 1 and j = 0, · · ·Lk − 1,
virtually without any matrix inversion.

In addition to Fk, it also requires BkBH
k in channel track-

ing. Based on the result in (8) and the fact that BkBH
k =

Rk:0−[Rk:1, · · · ,Rk:Lh
]R−1

k [Rk:1, · · · ,Rk:Lh
]H , it is not dif-

ficult to show from (5) that
BkBH

k = WkBkBH
k WH

k . (11)
On the other hand, for the case of Nk ≤ Lk, (ILh

⊗
Wk)Rk(ILh

⊗ WH
k ) in (6) becomes full-ranked, leading to

Fk = Wk[Rk:1, · · · ,Rk:Lh
](ILh

⊗ WH
k ) ×

[(ILh
⊗ Wk)Rk(ILh

⊗ WH
k )]−1. (12)

As a result, we have
BkBH

k = WkRk:0WH
k −Fk[(ILh

⊗Wk)Rk(ILh
⊗WH

k )]FH
k .

(13)
In (8) where Nk > Lk or in (12) and (13) for the

case of Nk ≤ Lk, the computational complexity of W†
k or

[(ILh
⊗ Wk)Rk(ILh

⊗ WH
k )]−1 seems to be high. However

the complexity can be greatly reduced if the frequency bins
allocated to user k possess certain structure. We will give
detailed discussions on the complexity reduction after we
introduce the recursive expectation maximization (EM) al-
gorithm for joint channel estimation and MAP detection.

IV. Joint Channel Estimation and Symbol

Detection over Time-Varying Channels

In the absence of both the transmitted symbols and chan-
nel state information, the receiver must in some ways per-
form channel estimation and symbol detection jointly in or-
der to recover the transmitted data. For time-varying chan-
nels, it has been shown in [5–7] that the recursive EM algo-
rithm is more suitable for joint channel tracking and symbol
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detection. In this work, we employ the recursive EM algo-
rithm to perform joint channel estimation and symbol detec-
tion both in frequency domain, aiming for a low-complexity
algorithm for OFDMA systems.

We define the observation for user k up to time M as
Yk:M � {Yk:M , · · · , Yk:1} and the unknown parameter set as
Θk:M = [Hk:M , · · · , Hk:1]. The hidden state of the system is
Ψk:M � {Xk:M , · · · , Xk:1}. It is clear that the complete data
for estimating the parameter set Θk:M is {Yk:M , Ψk:M}.
Given that Ψk:M is not in fact observed, the incomplete log
likelihood of Θk:M is given by

log P (Yk:M ; Θk:M ) = log EΨk:M {P (Yk:M , Ψk:M ; Θk:M )},
(14)

where EΨk:M {·} is the expectation w.r.t. Ψk:M . It is in
general difficult to estimate Θk:M from this LLK. To reduce
the complexity, we use the EM algorithm to approach it
iteratively. To this end, we first define a Kullback-Liebler
(K-L) measure of Θk:M at iteration � as∑
{Ψk:M}

log{P (Yk:M |Ψk:M ; Θk:M )}P (Ψk:M |Yk:M ; Θ̂�−1
k:M ), (15)

where Θ̂�−1
k:M is the estimate of Θk:M at iteration �−1. Given

P (Xk:m|Yk:M ; Θ̂�−1
k:M ), m = 1, . . . , M , the K-L measure can

be rewritten as

QM (Θk:M |Θ̂�−1
k:M ) � − log{πNσ2Nk

n }

−
M∑

m=1

EXk:m

{‖Yk:m − Xk:mHk:m‖2

σ2
n

|Yk:M ; Θ̂�−1
k:M

}
, (16)

where EXk:m{·|Yk:M ; Θ̂�−1
k:M} is expectation w.r.t. Xk:m,

using P (Xk:m|Yk:M ; Θ̂�−1
k:M ) ∝ P (Yk:M |Xk:m; Θ̂�−1

k:M ) in fre-
quency domain. The EM algorithm can be stated as
E-step: Compute QM (Θk:M |Θ̂�−1

k:M );
M-step: Θ�

k:M = arg maxΘk:M QM (Θk:M |Θ̂�−1
k:M ).

Given the state Θ̂�−1
k:M , the new state Θ̂�

k:M is obtained
by maximizing the K-L measure w.r.t. Θk:M . By iterat-
ing the above procedure, the EM algorithm is guaranteed
to converge to a locally steady state Θ̂k:M [8]. For dynamic
channels, direct optimization w.r.t. Θk:M is extremely com-
plicated. To alleviate the complexity of optimization, we
use the recursive optimization method introduced in [9] to
develop a recursive algorithm , which is written as

Ĥ
�

k:m = Ĥk:m|m−1 −
(

∂2Qm(Θk:m|Θ̂�−1
k:m)

∂2Hk:m
bHk:m|m−1

)−1

·
(

∂Qm(Θk:m|Θ̂�−1
k:m)

∂H∗
k:m

bHk:m|m−1

)
, m = 0, · · · ,M, (17)

where Hk:m = [HT
k:m, · · · ,HT

k:m−Lh+1]
T , ∂2Qi(·|·)

∂2Hk:i
�

∂2Qi(·|·)
∂H∗

k:i∂HT
k:i

, Θ̂�
k:m = {Ĥ�

k:m, Θ̂L
k:m−1}, with L being the to-

tal number of iterations at each time step, and Ĥk:m|m−1 =
f(Θ̂L

k:m−1) being the predicted value given by the dynamic
evolution function of Hm. Based on the recursive EM al-
gorithm, we will present two recursive estimators for blind
dynamic channel tracking, one for the case of Nk > Lk, and
the other for the case of Nk ≤ Lk.

Let S̃k:m � E{Xk:m|Yk:m; Θ̂�−1
k:m}/σ2

n and C̃k:m �
E{Xk:mXH

k:m|Yk:m; Θ̂�−1
k:m}/σ2

n, which is a diagonal matrix.

In addition, define Pk:m �
(
−∂2Qm(Θk:m|bΘ�−1

k:m)

∂2Hk:m
bHk:m|m−1

)−1

which is essentially the variance of channel estimate. We give
below the recursive minimum mean-squared error (MMSE)
channel estimators for users with assigned tones Nk > Lk

and Nk ≤ Lk, respectively

A. Recursive MMSE channel Estimator for Nk > Lk

Define RH
k:m � [ILk

| − FH
k ](ILh+1 ⊗ W†

k) and

Pk:m|m−1 �
[

C̃−1
k:m 0
0 Pk:m−1

]
. (18)

The recursive MMSE channel estimator is given by

Ĥk:m =
[

C̃−1
k:mS̃k:mYk:m

Ĥk:m−1

]
− Pk:m|m−1Rk:m

[
BkBH

k +

RH
k:mPk:m|m−1Rk:m

]−1
RH

k:m

[
C̃−1

k:mS̃k:mYk:m

Ĥk:m−1

]
. (19)

The recursive update of Pk:m is given by

Pk:m = Pk:m|m−1 − Pk:m|m−1Rk:m

[
BkBH

k +

RH
k:mPk:m|m−1Rk:m

]−1
RH

k:mPk:m|m−1. (20)

We note that no exact information of Xk:m is required in this
estimator. The stochastic information of data is provided to
the estimator via C̃k:m and S̃k:m through iterations.

B. Recursive MMSE channel Estimator for Nk ≤ Lk

For user k with Nk ≤ Lk, we use Fk and BkBH
k defined in

(12) and (13), respectively. Let

Pk:m|m−1 �
[ BkBH

k + FkPk:m−1FH
k FkPk:m−1

Pk:m−1FH
k Pk:m−1

]
.

(21)
The recursive MMSE channel estimator is given by

Ĥk:m =
[ FkĤk:m−1

Ĥk:m−1

]
+

[ BkBH
k + FkPk:m−1FH

k

Pk:m−1FH
k

]
[C̃−1

k:m +

BkBH
k + FkPk:m−1FH

k ]−1(C̃−1
k:mS̃k:mYk:m −FkHk:m−1).

The corresponding variance of channel estimation is

Pk:m = Pk:m|m−1 − Pk:m|m−1

[
INk

0

]
[C̃−1

k:m +

BkBH
k + FkPk:m−1FH

k ]−1[INk
0]Pk:m|m−1. (22)

V. Low-Complexity Algorithm

As it has been shown in (19) and (20) that the complexity
for implementing channel tracking for Nk > Lk lies in the
calculation of W†

k in Rk which, as shown in (7), requires ma-
trix inversion of Lk ×Lk. On the other hand, for users with
Nk ≤ Lk, the algorithm complexity is mainly dominated by
the matrix inversion of [(ILh

⊗Wk)Rk(ILh
⊗WH

k )] which is
required for the evaluation of Fk and BkBH

k as shown in (12)
and (13), respectively. If the matrices that require inversion
can be reduced to diagonal matrices or matrices whose in-
version can be implemented with fast algorithms, then the
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entire complexities of the schemes can be greatly reduced,
even if matrices W†

k, Fk and BkBH
k can be essentially cal-

culated off-line before real-time channel tracking.
For users with Nk > Lk, the complexity for (WH

k Wk)−1

could be quite large. However if the frequency bins associ-
ated with each user are partitioned into Q clusters, with Q
being an even number, Lk ≤ Q ≤ Nk/2, and the clusters
are evenly spaced among 0, · · · , N − 1. In addition, if the
frequency bins in every cluster are allocated to the same rel-
ative positions in each cluster, then it can be shown that
W†

k = N
Lk

WH
k , i.e. (WH

k Wk)−1 = N
Lk

ILk
.

On the other hand, for users with Nk ≤ Lk, if the
frequency bins of a user are evenly spaced by N/Nk and
Nk = 2p, N = 2q, p, q = 2, 3, · · · and p < q, then it can be
shown that the sub-matrices WkRk:iWH

k , i = 0, · · · , Lh−1,
of [(ILh

⊗ Wk)Rk(ILh
⊗ WH

k )] in Fk and BkBH
k is circu-

lant. This means that WkRk:iWH
k can be factorized into

WH
Nk

Σk:iWNk
where Σk:i is a diagonal matrix of dimension

Nk×Nk and WNk
is a FFT matrix of dimension Nk×Nk too,

with Nk ≤ Lk ≤ Lcp. Under this type of frequency alloca-
tion of user k, we have [(ILh

⊗Wk)Rk(ILh
⊗WH

k )] = [(ILh
⊗

WH
Nk

)Σk(ILh
⊗ WNk

)] and, hence, [(ILh
⊗ Wk)Rk(ILh

⊗
WH

k )]−1 = [(ILh
⊗ WH

Nk
)Σ−1

k (ILh
⊗ WNk

)], with the sub-
matrix of Σk at the i-th row and the j-th column equal to
Σk:|i−j|, i, j = 1, · · · , Lh. Now, using the same method that
we applied to evaluate R−1

k in (10), it is very simple to ob-
tain Σ−1

k since Lh is usually one or two. Let Δk � Σ−1
k .

Substituting the above results back into (12) and (13), it is
straightforward to show that

Fk = WH
Nk

[Σk:1, · · · , Σk:Lh
]Δk(ILh

⊗ WNk
) (23)

and

BkBH
k = WH

Nk
Σk:0WNk

−
WH

Nk
[Σk:1, · · · , Σk:Lh

]Δk[Σk:1, · · · , Σk:Lh
]HWNk

.(24)

VI. Simulation Results

We now present some simulation results to demonstrate
the performance of the proposed frequency-domain joint
channel tracking and MAP detection scheme. The total
number of tones in this OFDMA system is N = 128. There
are five users in the system, with their corresponding num-
bers of tones being {24, 8, 16, 4, 2}, respectively. The length
of cyclic prefix Lcp = 8, and the number of transmission
paths Lk for each user is randomly generated with Lk ≤ Lcp.
The channel coefficients for each user are generated using
Jake’s model with the fdTs = 0.01 where Ts is the OFDM
symbol time. To present the robustness of the proposed
scheme, the receiver has no knowledge of Lk and simply as-
sumes Lk = 8 for each user in doing channel tracking.

Fig. 1 shows the channel gain and phase for the first tone
of user 3 and Fig. 2 presents the similar results for the first
tone of user 5. It is clear that channel gains can be closely
tracked, while there exist phase ambiguities in phase plots.
This phase ambiguity problem can be circumvented by using
differential encoding. In the simulations, we use DQPSK for
each user.
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Fig. 1. Channel Tracking for the first tone of user 3 at Eb/N0 = 30dB.
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Fig. 2. Channel Tracking for the first tone of user 5 at Eb/N0 = 30dB.
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