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ABSTRACT

In this paper, we address the problem of OFDM channel estimation
in the presence of phase noise (PHN) and carrier frequency offset
(CFO). For OFDM systems, PHN and CFO cause two effects: the
common phase error (CPE) and the intercarrier interference (ICI)
which severely degrade the accuracy of the channel estimate. In lit-
erature, several algorithms have been proposed to solve this problem.
Here, we propose the joint estimation of channel impulse response
(CIR), CFO and PHN with no prior statistical knowledge of PHN
and SNR. The proposed approach uses a training OFDM symbol
to track and estimate these many unknowns in the time domain by
particle ltering. The particle lter is ef ciently implemented by
combining the principles of the Rao-Blackwellization technique and
the hybrid importance function which encompasses the advantages
of both the optimal and the prior importance functions. Simulation
results are provided to illustrate the effectiveness of the proposed
algorithm.

Index Terms— Communication systems, Estimation, Phase
noise, Monte Carlo methods.

1. INTRODUCTION

Orthogonal frequency division multiplexing (OFDM) is known to be
an ef cient technique for high-rate transmission that can overcome
the intersymbol interference (ISI) resulting from the time dispersion
of multipath fading channels. It has been adopted as the transmission
method of many standards in wireline and wireless communications,
such as digital subscriber lines (DSL), digital and audio broadcasting
(DAB/DVB), wireless area networks (IEEE 802.11) and broadband
wireless access (IEEE 802.16).

Unfortunately, OFDM systems are very sensitive to phase noise
(PHN) and to carrier frequency offset (CFO) respectively caused
by oscillator imperfections and Doppler shifts [1–3]. Indeed, these
phase distortions destroy the orthogonality of the OFDM subcarriers
and lead both to rotation of every subcarrier by a random phase,
called common phase error (CPE), and to intercarrier interference
(ICI).

Many approaches have been proposed to estimate and compen-
sate PHN [4–6] or both CFO and PHN [7]. Nevertheless in these
algorithms, the channel impulse response (CIR) is assumed to be
known prior to phase distortion suppression. Channel estimation in
the presence of both PHN and CFO has been adressed in [8,9]. In [8],
the authors focus principally on both channel and CFO estimation.
Recently, in [9], a maximum a posteriori estimator of channel re-
sponse, PHN and CFO incorporating prior knowledge of SNR and
PHN statistics is proposed through the maximization of a complete
likelihood function.

In this paper, we consider the channel estimation problem in the
presence of PHN and CFO with no a priori knowledge of operat-
ing SNR and PHN statistics. To estimate these unknown states with
a single OFDM symbol, we propose a marginalized particle lter
based on the hybrid importance function. To allow the use of this
hybrid importance function, we derive an approximation of the opti-
mal importance function for sampling the PHN distortions.

The paper is organized as follows. The OFDM system model
and the PHN model are introduced in Section 2 leading to the dy-
namic state space representation. Section 3 is devoted to the particle
ltering. We describe the proposed marginalized particle lter for
joint channel, CFO, PHN and a priori statistics estimation. The sim-
ulation results are provided in Section 4 showing the effectiveness of
the proposed algorithm. Finally, conclusions are given in Section 5.

2. SYSTEMMODEL

2.1. Signal Model

We consider an OFDM system with N subcarriers. The transmitted
OFDM signal sk is generated via an inverse FFT operation applied
on the subcarrier symbols dk. To prevent intersymbol interference
(ISI), a cyclic pre x of length Ncp is placed in front of the useful
part of duration T of the signal.

We assume a slow fading frequency-selective channel with L
paths. The CIR remains constant during one transmission packet
including several OFDM symbols. Assuming perfect timing syn-
chronization and L ≤ Ncp, the complex baseband received OFDM
signal can be written, after removal of the cyclic pre x :

rk = e
j(θk+2πkε/N)

L−1�
l=0

hlsk−l + bk (1)

where k denotes the k-th sample of the OFDM symbol and {hl}L−1l=0 ,
{sk}

N−1
k=0 , {θk}

N−1
k=0 and {bk}

N−1
k=0 denote respectively the CIR, the

known transmitted signal, the PHN and a circular zero mean gaus-
sian white noise with power σ2b . ε = ΔfT is the normalized carrier
frequency offset (CFO). Equation (1) can be written in the matrix
form as :

rk = e
j(θk+2πkε/N)Skh+ bk (2)

where Sk = � sk · · · sk−L+1 � is the transmitted OFDM signal
vector and h = � h0 · · · hL−1 � T is the CIR vector.
2.2. Phase Noise Model

In a baseband complex equivalent form, the carrier delivered by the
noisy oscillator can be modeled as p(t) = exp(jθ(t)), where the
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phase distortion θ(t) is a Brownian process [1, 2]. Its power spec-
tral density has a Lorentzian shape controlled by the parameter β
representing the two-sided 3dB bandwidth. This model produces a
1/f2 type noise power behavior that agrees with experimental mea-
surements carried out on real RF oscillators. The phase noise rate
is characterized by the bandwidth β normalized with respect to the
OFDM symbol rate 1/T , namely by the parameter βT . In a discrete
form, the phase distortion can be written as :

θk = θk−1 + vk (3)

where vk is a zero mean gaussian variable with variance
σ2v = 2πβT/N .

2.3. Dynamic State-Space Model

This paper focuses on accurate estimation of CIR, CFO and PHN
from a single OFDM symbol. At the receiver, the transmitted OFDM
signal {sk}N−1k=0 is perfectly known. However, both the instanta-
neous PHN power σ2v and the AWGN power σ2b are assumed un-
known. The mathematical foundation of our solution is the Bayesian
theory. This theory requires a dynamic state-space (DSS) modeling
both the observation and hidden process.

By combining (3) and (2) and by using the fact that one dynamic
state θk and four static parameters (h, ε, σ2v and σ2b ) are unknown,
we obtain the following dynamic state-space model :

State equations : � θk = θk−1 + vk
εk = εk−1, σ

2
v,k = σ

2
v,k−1, σ

2
b,k = σ

2
b,k−1

(4)

Measurement Equation : rk = e
j(θk+2πkεk/N)Skh+ bk (5)

Let us introduce the state vector xk de ned as xk = � h, θk, ξk � with
ξk the vector of static parameters : ξk = � εk, σ2v,k, σ2b,k � . Time in-
dex k are inserted on static parameters ξ and ε in order to clearly dis-
tinguish parameter estimation at the k-th index. Our main objective
is to estimate xk using the a posteriori probability density function
(pdf) p(x0:k|r0:k). Unfortunately, this pdf is analytically intractable,
so we propose a numerical approximation via particle ltering [10].

Remark : With this joint estimation, it can be shown that the
phase distortions can be accurately estimated, but with a constant
gapΦ from the real phase distortions. This rotation can be estimated
during the data detection step using pilot symbols [9].

3. PARTICLE FILTERING

3.1. Introduction

Particle ltering is a sequential Monte Carlo sampling method built
on the Bayesian paradigm [10]. From the Bayesian theory, at sample
k , the posterior distribution p(x0:k|r0:k) is the main entity of inter-
est. However, due to the nonlinearity of the measurement equation
(5), its analytical expression is not tractable. Alternatively, particle
ltering can be applied to approximate this pdf by stochastic samples
generated using a sequential importance sampling strategy.

Particle ltering is an extension of the sequential Monte Carlo
methodology [10]. It consists in recursively estimating the required
posterior density function p(x0:k|r0:k) by a set of M random sam-
ples with associated weights, denoted by {x(m)0:k , w

(m)
k }

m=1..M
:

�
p(x0:k|r0:k) =

M�
j=1

δ(x0:k − x
(j)
0:k) �w(j)k (6)

where x(j)k is drawn from the importance function π(xk|x(j)0:k−1, r0:k),
δ(.) is the Dirac delta function and �w(j)k = w

(j)
k / � M

m=1 w
(m)
k is the

normalized importance weight associated with the j-th particle.
The weights w(m)k are updated according to the concept of im-

portance sampling :

w
(m)
k ∝

p(rk|x
(m)
0:k )p(x

(m)
k |x(m)0:k−1)

π(x
(m)
k |x(m)0:k−1, r0:k)

w
(m)
k−1 (7)

After a few iterations, particle ltering is known to suffer from
degeneracy problems. So we integrate a resampling step to select
particles for new generations in proportion to the importance weights
[10]. Liu and Chen [11] have introduced a measure known as the
effective sample size, Neff = [ � M

m=1( �w(m)k )2]−1, and have pro-
posed to apply the resampling procedure whenever Neff is below a
prede ned threshold. For the resampling step, we use the Residual
Resampling scheme described in [12]. This scheme outperforms the
simple random sampling scheme with a small Monte Carlo variance
and a favorable computational time [11].

3.2. Particle Filter for Joint CIR, CFO and PHN Estimation

Previously, we have seen how particle ltering can be used to ob-
tain the posterior density function p(x0:k|r0:k). In order to reduce
the state dimension for the particle lter, the Rao-Blackwellization
technique, also known as the marginalized particle lter [10,13,14],
marginalizes out conditionally linear-Gaussian state variables from
the joint posterior distribution. This strategy is shown to reduce the
variance of the state estimates obtained via the particle lter [13].
This is due to the fact that the particle lter is then only used to
estimate the nonlinear states, while the remaining conditional linear-
Gaussian states are estimated using the closed-form Kalman lter. In
our case, conditionally on the nonlinear state variables θk and ξk the
DSS model contains a linear substructure on h, subject to gaussian
noise. Using the Bayes’ theorem, the posterior density function of
interest can be written as :

p(x0:k|r0:k) = p(h|θ0:k, ξ0:k, r0:k)p(θ0:k, ξ0:k|r0:k) (8)

where p(h|θ0:k, ξ0:k, r0:k) is analytically tractable and can be ob-
tained via a Kalman lter associated with each particle. Indeed, the
j-th pdf is a multidimensional gaussian probability density function.
The mean h

(j)
k|k and the covariance Σ

(j)
k|k can be obtained using the

Kalman ltering equations given by the time update equations :

h
(j)
k|k−1 = h

(j)
k−1|k−1

Σ
(j)
k|k−1 = Σ

(j)
k−1|k−1

(9)

and the measurement update equations :

χ
(j)
k = SkΣ

(j)

k|k−1
S
H
k + σ

2(j)
b,k

K
(j)
k = Σ

(j)

k|k−1
(ej(θ

(j)
k

+2πkε
(j)
k
/N)

Sk)
H(χ

(j)
k )−1

h
(j)

k|k = h
(j)

k|k−1 +K
(j)
k (rk − e

j(θ
(j)
k

+2πkε
(j)
k
/N)

Skh
(j)

k|k−1)

Σ
(j)

k|k = Σ
(j)

k|k−1 −K
(j)
k e

j(θ
(j)
k

+2πkε
(j)
k
/N)

SkΣ
(j)

k|k−1

(10)
where χ(j)k andK(j)

k are respectively the residual covariance and the
optimal Kalman gain associated with the j-th particle.
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In addition, the marginal posterior distribution p(θ0:k, ξ0:k|r0:k)
in (8) can be approximated with a particle lter as :

�
p(θ0:k, ξ0:k|r0:k) =

M�

j=1

δ(θ0:k − θ
(j)
0:k; ξ0:k − ξ

(j)
0:k) �w

(j)
k (11)

where δ(.; .) is the two-dimensional Dirac delta function. Then, our
objective is to generate samples from the distribution p(θ0:k, ξ0:k|r0:k).
The choice of the importance function is essential because it deter-
mines the ef ciency as well as the complexity of the particle lter-
ing algorithm. Here, we adopt the hybrid importance function [15],
which encompasses the advantages of both the posterior and the
prior importance functions. The proposed hybrid importance func-
tion is expressed as :

π(θk, ξk|θ
(j)
0:k−1, ξ

(j)
0:k−1, r0:k) = p(θk|θ

(j)
0:k−1, ξ

(j)
0:k, r0:k)

×p(ξk|ξ
(j)
0:k−1)

= p(θk|θ
(j)
0:k−1, ξ

(j)
0:k, r0:k)

×δ(ξk − ξ
(j)
0:k−1) (12)

where (12) is obtained using the state equations in (4). The corre-
sponding unnormalized weights are then computed by :

w
(j)
k ∝ w(j)k−1p(rk|θ

(j)
0:k−1, ξ

(j)
0:k, r0:k−1) (13)

Now, we discuss the sampling of θk and ξk from (12). First,
let’s note that for ξk no sampling is needed, i.e. ξ(j)k = ξ

(j)
k−1 so

that the time update of ξ(j)k is not performed and the accuracy of the
nal estimates greatly depends on the initial samples. To adress this
problem, kernel smoothing techniques or Markov chain Monte Carlo
(MCMC) moves [10] can be used during the resampling procedure.
However, in our context, such methods bring no improvement.

The sampling of θk requires the analytical expression of the op-
timal importance function. This pdf can be rewritten as :

p(θk|θ
(j)
0:k−1, ξ

(j)
0:k, r0:k) ∝ p(rk|θk, θ

(j)
0:k−1, ξ

(j)
0:k, r0:k−1)

×p(θk|θ
(j)
0:k−1) (14)

with
p(θk|θ

(j)
0:k−1) = N (θk; θ

(j)
k−1, σ

2(j)
v,k ) (15)

and,

p(rk|θk, θ
(j)
0:k−1, ξ

(j)
0:k, r0:k−1) = Nc(rk; ρ

(j)
k , χ

(j)
k ) (16)

where ρ(j)k = ej(θ
(j)
k

+2πkε
(j)
k
/N)

Skh
(j)

k|k−1
and χ(j)k are given by

the Kalman lter associated with the j-th particle as described in
(9)-(10). Nc(.) and N (.) denote respectively the circular gaussian
distribution and the gaussian distribution. According to (15)-(16),
an analytical form for (13) remains untractable due to the double
exponential in ρ(j)k . However, by linearizing the noise term vk in
(3), the mean of (16) is approximated by :

ρ
(j)
k = ej(θ

(j)
k−1

+vk+2πkε
(j)
k
/N)

Skh
(j)
k|k−1

≈ (1 + jvk)e
j(θ

(j)
k−1

+2πkε
(j)
k
/N)

Skh
(j)
k|k−1 (17)

This approximation holds when the phase noise rate is small and
is more accurate than the usual approximation ejθk ≈ 1+jθk. Using

(15), (16) and (17) and after several algebraic manipulations, (14)
can be simpli ed as :

p(θk|θ
(j)
0:k−1, ξ

(j)
0:k, r0:k) ∝ C

(j)
k e

− 1

2Λ
(j)
k �� |rk−Γ

(j)
k
|2

|Γ
(j)
k
|2σ

2(j)
v,k

+χ
(j)
k

−(μ
(j)
k

)2 ��
×N (θk;μ

(j)
k + θ

(j)
k−1,Λ

(j)
k ) (18)

where C(j)k = � Λ
(j)
k /(2πχ

(j)
k σ

2(j)
v,k ), μ

(j)
k =

�(Γ
(j)∗
k

rk)σ
2(j)
v,k

|Γ
(j)
k
|2σ

2(j)
v,k

+χ
(j)
k

(with�(.) the imaginary part), Λ(j)k =
χ
(j)
k
σ
2(j)
v,k

|Γ
(j)
k
|2σ

2(j)
v,k

+χ
(j)
k

and Γ(j)k =

ej(θ
(j)
k−1

+2πkε
(j)
k
/N)

Skh
(j)

k|k−1.
The sampling distribution of θk is now identi ed in (18) and thus

only the analytical expression to update the importance weights is
missing for the implementation of the particle lter. The pdf required
in (13) can be rewritten as :

p(rk|θ
(j)
0:k−1, ξ

(j)
0:k, r0:k−1) = �

R

p(rk|θk, θ
(j)
0:k−1, ξ

(j)
0:k, r0:k−1)

×p(θk|θ
(j)
0:k−1)dθk (19)

Using (18), it is straightforward to show that (19) can be approx-
imated as :

p(rk|θ
(j)
0:k−1, ξ

(j)
0:k, r0:k−1) ≈ C

(j)
k e

− 1

2Λ
(j)
k �� |rk−Γ

(j)
k
|2

|Γ
(j)
k
|2σ

2(j)
v,k

+χ
(j)
k

−(μ
(j)
k

)2 ��
(20)

Each element required in the implementation of the particle l-
tering algorithm has been identi ed. Finally, the minimum mean
square error (MMSE) estimate of h is easily calculated according to

�
h =

M�

j=1

h
(j)
N−1|N−1 �w

(j)
N−1 (21)

The proposed marginalized particle lter algorithm is summed
up in Table 1.

Table 1. Marginalized Particle Filter Algorithm

Initialization, for m =, 0..., M

ε
(m)
−1 ∼ U [−0.5; 0.5], σ

2(m)
v,−1 ∼ U [0; 0.1], σ

2(m)
b,−1 ∼ U ]0; 1]

h
(m)

−1|−1
= 0L×1, Σ

(m)

−1|−1
=

1

L
IL, �w(m)

k
= 1/M

For k = 0, ..., N − 1
For m = 0, ..., M

1. Sample the static paramaters from their prior
distribution, i.e. ξ

(m)
k

= ξ
(m)
k−1

2. Update the predicted Kalman equations using (9)

3. Sample θ
(m)
k

from the optimal importance function
using (18)

4. Update the filtered kalman equations using (10)

5. Evaluate the corresponding weights using (20)

6. Resampling step if Neff < N/2

Evaluate the channel estimate �h using (21).
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4. SIMULATIONS

In this section, the performance of the proposed MPF is studied
through simulations. The following system parameters are assumed :
a Rayleigh multipath channel with a delay of L = 10 taps and a uni-
form power delay pro le, an OFDM training symbol with N = 64
subcarriers and a cyclic pre x of Ncp = 16 samples. Each subcar-
rier is arbitrarily modulated in QPSK. The CFO ε is drawn for each
OFDM symbol from a uniform distribution in [−0.5; 0.5]. The pro-
posed marginalized particle lter is implemented with 100 particles.

Since no algorithms have been proposed to solve this problem
without prior statistical knowledge of PHN and SNR, the mean square
error (MSE) of the channel estimation is compared to the posterior
Cramér-Rao Bound (CRB) for an OFDM channel estimator without
PHN and CFO distortions. Since the DSS model (4) becomes linear
and gaussian, it can be shown that the CRB is equal to the covariance
of p(h|θ0:k, ξ0:k, r0:k) de ned in (10) [16] :

MSECRB = E � trace � ΣN−1|N−1 � � (22)
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Fig. 1. MSE of channel estimation vs. SNR for different phase
noise rates βT with only σ2v unknown (solid lines) or both σ2v and
σ2b unknown (dashed lines).

Fig. 1 shows the channel estimation accuracy as a function of
phase noise rate βT and SNR. The MSE is obtained using :

MSE = 1

X

X�

n=1

L−1�

l=0

(hnl −
�

hnl )
2 (23)

whereX is the number of OFDM symbols used in simulations. The
results demonstrate the robustness of the proposed MPF algorithm
when the a priori statistics of the model are not perfectly known.
As can be seen from this gure, for a SNR less than 15 dB, the
proposed MPF optimally estimates the CIR and leads to the same
performances whatever the degree of assumption about prior statis-
tics. CIR estimation performs better when only phase noise rate is
unknown. For a large SNR, MSE curve tends towards a minimum
MSE threshold depending on the phase noise rate. This is due to the
fact that the covariance matrix of each Kalman lter doesn’t depend
on θ(j)k and ε(j)k and consequently the Kalman lter has the same
convergence speed whatever phase noise rate.

5. CONCLUSION

In this paper, we consider the problem of OFDM channel estima-
tion in the presence of CFO and PHN. Moreover, we study the dif-
cult task where prior statistics of PHN and AWGN is assumed un-
known at the receiver. To solve this problem, we propose an original
marginalized particle lter based on the hybrid importance function.
The use of this hybrid importance function is made possible by deriv-
ing an approximate optimal importance function for PHN. Numeri-
cal simulations demonstrate the effectiveness and the robustness of
the proposed MPF algorithm for OFDM channel estimation in the
presence of CFO and PHN without knowledge of prior statistical in-
formation. A such algorithm can be ef ciently used for the design of
OFDM receivers in wireline and wireless communication systems.
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