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ABSTRACT

In this paper we present a novel channel impulse response estimation
technique for block-oriented OFDM transmission based on combin-
ing estimators: the estimates provided by a Kalman Filter operating
in the time domain and a Wiener Filter in the frequency domain are
optimally combined by taking into account their estimated error co-
variances. The resulting estimator turns out to be identical to the
MAP estimator of correlated jointly Gaussian mean vectors. Differ-
ent variants of the proposed scheme are experimentally investigated
in an IEEE 802.11a-like system setup. They compare favourably
with known approaches from the literature resulting in reduced mean
square estimation error and bit error rate. Further, robustness and
complexity issues are discussed.

Index Terms— Orthogonal frequency division multiplexing,
MAP estimation, Kalman filtering, Wiener filtering

1. INTRODUCTION

Orthogonal Frequency Division Multiplexing (OFDM) has received
a lot of interest in recent years both for wireline and wireless com-
munications for its spectral efficiency and implementation simplic-
ity [1]. By transmitting a high-rate data stream by many low-rate
streams in parallel, a frequency-selective channel is turned into a set
of parallel non-frequency selective narrowband transmission chan-
nels, for which a simple one-tap equalization can be carried out.

In this paper we consider wireless packet-oriented coherent
OFDM transmission, as is e.g. used in wireless LANs (IEEE
802.11a/b/g, Hiperlan/2), assuming a single-input and single-output
system. Coherent OFDM detection requires, among others, channel
estimation and tracking. To this purpose, a burst of OFDM symbols
typically consists of a preamble with known symbols, followed by
the payload carrying the data. Some subcarriers of the payload also
carry known data and serve the purpose of frequency fine tuning [2].
Channel impulse response estimation can then be carried out on the
known symbols of the preamble. In order to increase the size of the
payload or for use in a scenario with high terminal velocity, semi-
blind channel estimation techniques have been proposed, where the
channel estimates obtained on the preamble serve as initial values for
a (re)estimation on the data of the payload. Many algorithms have
been developed for pilot-assisted and semi-blind channel estimation
[3].

In this paper we also carry out channel estimation both on the
preamble and on the payload. However, we seek for an optimal
combination of the two. First, a Kalman Filter is used for estima-
tion on the preamble in the time domain. This has been shown to
be computationally more efficient and to result in lower variance of

the estimates compared to a frequency-domain Kalman Filter [4].
Next we conduct channel frequency response estimation on the sym-
bols of the payload, which consists of two steps. The first step is a
Maximum-Likelihood estimation, either solely at the subcarriers of
the interspersed pilot data or also on the data subcarriers using the
Expectation-Maximization (EM) algorithm. In a second step the es-
timates are improved by Wiener filtering. The final step is the op-
timal combination of the Kalman and Wiener Filter estimates. The
resulting estimation formulae are surprisingly simple and we will
give an alternative interpretation of them.

The paper is organized as follows. In the next section the OFDM
transmission model is outlined. Section 3 describes the proposed
channel estimation. In Section 4 we present simulation results and
discuss robustness issues, before finishing with conclusions drawn
in section 5.

2. SYSTEM MODEL

We consider a block-oriented OFDM transmission over a multipath
fading channel. Let

ã(k) = (ã0(k), . . . , ãM−1(k))
T (1)

denote the (M × 1) symbol vector in the frequency domain1 at time
k = iB + n, where B is the number of symbols per block, i counts
the blocks (packets) and n the symbols within a block. For simplic-
ity of notation, let us assume that the known preamble consists of
one symbol at n = 0 and the payload of the remaining B − 1 sym-
bols (n = 1, . . . , B − 1). The OFDM modulated symbol vector is
obtained as

x(k) = (WM×M )H ã(k). (2)

Here, WM×M denotes the DFT matrix of dimension (M × M)
with the (i, l)-th entry (W)i,l = 1√

M
exp(−j2πil/M), and (·)H

denotes Hermitian transpose.
The dispersive fading channel is characterized by the channel

impulse response (CIR) vector

h
(0)(k) = (h

(0)
0 (k), . . . , h

(0)
Lh−1(k))

T
(3)

of known length Lh. The h
(0)
l (k), l = 0, . . . , Lh − 1, are indepen-

dent complex Gaussian random variables with a Jakes power density
spectrum.

Prior to transmission, a cyclic prefix of length L > Lh symbols
is prepended and removed after transmission. The received signal
can then be written as follows [1]:

r(k) = X(k)h(0)(k) + n(k). (4)

1We denote all frequency domain variables by a tilde (̃·).

III  2771424407281/07/$20.00 ©2007 IEEE ICASSP 2007



X(k) is a (M × Lh) circulant matrix formed from the vector x(k),
and the additive white noise vector n(k) consists ofM independent
complex Gaussian random variables of variance σ2

n per dimension.
Throughout this paper we assume perfect timing and frequency

synchronisation, and absence of phase noise.

3. CHANNEL ESTIMATION

The proposed channel estimator consists of a time domain Kalman
Filter operating on the preamble, a frequency domain Wiener Filter
working on the payload, and the combination of the estimates.

3.1. Kalman Filter

For the design of the Kalman Filter we assume signal propagation

along L̂h distinct paths, where the channel response of each path is
described by a first-order state equation [5]:

hl((i+1)B) = f ·hl(iB)+g ·wl(iB); l = 0, . . . , L̂h−1, (5)

where wl(iB) is complex white Gaussian noise of zero mean and
unit variance, and

f = J0(2πf̂dTB) (6)

g =

q
(1− f2)/L̂h. (7)

J0 denotes the modified Bessel function of first kind and 0-th order.
f̂d is the assumed Doppler frequency, and TB is the duration of a
data block. In matrix notation, we have the following state equation

h(i+ 1) = Fh(i) + Gw(i) (8)

where F = f · IL̂h×L̂h
,G = g · IL̂h×L̂h

, and

E[h(i)hH(i)] = (1/L̂h)IL̂h×L̂h
. (9)

IL̂h×L̂h
denotes the identity matrix of dimension (L̂h × L̂h). Here

we left outB in the time argument for notational convenience. Note,
in this model we assume for simplicity that each propagation path
has the same power, because in practice the power profile is unknown
at the receiver. Since the data of the preamble are known, eq. (4) may
serve as measurement equation.

The Kalman Filter computes the a posteriori density of the chan-
nel impulse response vector, given all past observations, as a Gaus-
sian density with mean h

(KF )(i|i), the MMSE estimate of the CIR,

and covariance P
(KF )(i|i), which equals the covariance matrix of

the estimation error [6]:

p(h(0)(i)|r(0), . . . , r(i)) =

N (h(0)(i);h(KF )(i|i),P(KF )(i|i)). (10)

The initial valueP
(KF )(0|−1) of the covariance matrix is given by

eq. (9).
For later use in Wiener filtering and estimator combination, the

variables are transformed to the frequency domain:

h̃
(KF )(i|i) = WM×L̂h

h
(KF )(i|i) (11)

P̃
(KF )(i|i) = WM×L̂h

P
(KF )(i|i)(WM×L̂h

)H . (12)

Note that we adopted a block fading model here (h assumed constant
for all B symbols of a block). We could have obtained individual
estimates for each symbol interval k = iB + n within the i-th burst
by prediction, which we, however, did not do to save computations.
Thus we set h̃(KF )(k) = h̃

(KF )(i|i) and P̃
(KF )(k) = P̃

(KF )(i|i)
for k = iB, . . . , (i+ 1)B − 1.

3.2. Wiener Filter

The estimation of the channel frequency response (CFR) is executed
in two stages: first Maximum-Likelihood (ML) estimates are com-
puted for individual or all subcarriers, second an estimate for the
frequency response on all subcarriers is obtained by Wiener filter-
ing.

The received signal at subcarrier m, m = 0, . . . ,M − 1, and
symbol interval k, is given by

r̃m(k) = h̃(0)
m (k)ãm(k) + ñm(k), (13)

where r̃, h̃(0) and ñ denote the discrete Fourier transforms of r, h(0)

and n, respectively. A ML estimate of the CFR on the payload con-
taining unknown symbols can now be obtained either by decision-
directed methods or by using the Expectation-Maximization (EM)
algorithm [7].

For the results presented in this paper, however, we only con-
sider a ML estimation on the Np subcarriers p(j), j = 1, . . . Np,
containing embedded pilots. Here, the symbols are known and the
ML estimate is obtained as:

z̃′p(j)(k) =
r̃p(j)(k)ã

∗
p(j)(k)

|ãp(j)(k)|2
; j = 1, . . . , Np. (14)

Regarding the ML estimates as ”observations”, the purpose of the
subsequent Wiener Filter is to obtain estimates of the CFR on all
subcarriers and symbols by exploiting knowledge about the corre-
lation in time and frequency direction. Instead of applying a two-
dimensional linear filter, we first carry out a Wiener filtering along
the time axis and second along the frequency axis. This is known to
achieve almost identical performance, at, however, greatly reduced
computational cost, as will be seen below.

Since the Wiener Filter along the time axis can be designed quite
easily using estimates of the Doppler frequency and noise variance,
it is not considered here in detail. Let the resulting estimates be
denoted by z̃(k), where this vector has dimension Np for the case
considered here. We obtain the following linear observation model:

z̃(k) = Ah̃
(0)(k) + ñ(k). (15)

The matrixA is of dimension (Np×M) and consists of zeros except
for ones at the positions (i, Np(i)), i = 1, . . . , Np. Furthermore,
E[ñ(k)ñH(k)] = Λñ(k) is the diagonal covariance matrix of the
estimation error of the Wiener Filter in time direction, which is a
function of the position k within a burst. However, to save compu-
tations we used the same value, the value in the middle of the burst
(k = iB + B/2), for all k, making Λñ independent of the symbol
index k.

The Wiener Filter along the frequency direction gives

h̃
(WF )(k) = B(k)z̃(k), (16)

whereB is a solution of the Wiener-Hopf equation

B(k)Rz̃(k) = R
h̃z̃
(k). (17)

Using the linear model (15) we obtain

Rz̃(k) = E[z̃(k)z̃H(k)] = AR
h̃
(k)AH + Λñ (18)

R
h̃z̃
(k) = E[h̃(0)(k)z̃H(k)] = R

h̃
(k)AH , (19)

where
R

h̃
(k) = E[h̃(0)(k)(h̃(0))H(k)] (20)
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is the correlation matrix of the unknown CFR, which has also been
used as initial value of the error covariance matrix of the Kalman
filter. We therefore set

R
h̃
(k) = P̃

(KF )(0| − 1). (21)

3.3. Estimator Combination

We now have two estimates for the CFR at symbol interval k =
iB + n within the i-th burst: h̃

(KF )(k) and h̃
(WF )(k). They can

be optimally combined to an estimate h̃
(c), using their respective

estimation error covariances [6]:

(P̃(c))−1
h̃

(c) = (P̃(WF ))−1
h̃

(WF ) + (P̃(KF ))−1
h̃

(KF ), (22)

where

(P̃(WF ))−1 = R
−1

h̃
+ A

H
Λ

−1
ñ

A (23)

(P̃(c))−1 = (P̃(WF ))−1 + (P̃(KF ))−1 − R
−1

h̃
(24)

are the covariance matrices of the estimation error of the Wiener
Filter and the combined estimator, respectively. Using (15) - (21)
we obtain the surprisingly simple result

(P̃(c))−1
h̃

(c) = A
H
Λ

−1
ñ

z̃ + (P̃(KF ))−1
h̃

(KF ), (25)

where
(P̃(c))−1 = A

H
Λ

−1
ñ

A + (P̃(KF ))−1. (26)

A closer look at these equations reveals an alternative interpretation.
The result is identical to the MAP estimation of the mean vector h̃(0)

of correlated jointly Gaussian random variables, given a Gaussian
prior according to eqs (10) - (12) and the ML estimate z̃ according
to (15) on the data [8], [9].

4. SIMULATION RESULTS

4.1. Known Channel Model

In this section we present experimental results using a frame data
structure which is similar to an IEEE 802.11a system. A burst con-
sists of B = 102 symbols, of which the first two are the known
preamble and the remaining form the payload. Of the totalM = 64
subcarriers, channels no. 7, 21, 43 and 57 are reserved for known
pilots. The available bandwidth in the 5 Ghz Band is chosen to
20 MHz, the data rate is 24 MBit/s with 96 data bits per OFDM
symbol (coding rate 1/2), and the modulation employed is 16-QAM.

The channel is Rayleigh fading with four independent propaga-
tion paths with power loss and delay profile of [0,−1,−3,−9] dB
and [0, 100, 200, 300] ns and Jakes Doppler spectrum, which cor-
responds to a typical urban type of scenario. The mobile terminal
velocity is set to v = 30.8 km/h. First we assume the channel model
parameters to be perfectly known.

Figs. 1 and 2 show the bit error rate (BER) of the decoder and
the mean square estimation error (MSEE) of the CFR estimation,
respectively. Here, the ”observation” vector z̃(k) is the estimate
of the CFR on the pilot subcarriers after Wiener filtering along the
time axis. The combined estimator is compared with a Kalman Fil-
ter operating on the preamble and a Wiener Filter, which estimates
the CFR on all subcarriers according to eqs. (15) - (20), but with
R

h̃
= P̃

(KF )(0| − 1). This is the classical way of smoothing CFR

estimates by exploiting the knowledge of the maximum delay L̂h

[3]. A lower bound for the BER is obtained by assuming the CFR
to be perfectly known. As can be seen from these results, estimating
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Fig. 1. BER of combined and individual estimators
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Fig. 2. MSEE of combined and individual estimators

the CFR on the pilot subcarriers alone performs very poorly. Also
the Kalman filter, operating only on the preamble of a long burst, is
not very effective. However, the combination of the two individually
poor estimates is very powerful. This is probably due to the fact that
the Frobenius norm of the covariance matrix P̃

(KF )(k) of the a pos-

teriori density p(h̃(0)(i)|r(0), . . . , r(i)), as provided by the Kalman
Filter, is typically much smaller than the norm of the covariance ma-
trix P̃

(KF )(0| − 1) of the corresponding a priori density p(h̃(0)(i)).
The more informative covariance matrix leads to more effective es-
timation.

4.2. Robustness

For the experiments reported so far we assumed that the Doppler
frequency, the multipath profile (number and delay of paths) and the
variance of the additive noise to be known. In this subsection we in-
vestigate the robustness of proposed channel estimator to incomplete
knowledge of these parameters. Figs. 3 - 5 show the MSEE of the
proposed combined and the individual estimators:

a) As a function of the Eb/N0 assumed by the receiver, while
the true channel-sided Eb/N0 is 10 dB.

b) As a function of terminal velocity (and thus max. Doppler
frequency) assumed by the terminal, while the true terminal
velocity is 30.8 km/h at Eb/N0 = 14 dB.
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Fig. 3. MSEE at assumed Eb/N0
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Fig. 4. MSEE at assumed velocities

c) For wrong assumptions concerning the multipath profile: The
maximum delay (300 ns) is assumed to be known, but the
profile is assumed to consist of 7 paths with relative delays of
50 ns.

For each setup, the system parameters not mentioned, are assumed
to be known to the extent described in section 4.1. Figs. 3 - 5 show
that the combined estimator consistently outperforms the individual
estimators.

4.3. Computational Complexity

Compared to a Wiener Filter, the additional complexity of the pro-
posed estimator resides in the Kalman Filter and the estimator com-
bination. Note, however, that the Kalman Filter only operates on the
preamble, i.e. only one iteration of the Kalman Filter equations is
carried out per burst. The estimator combination (22) requires the
inversion of P̃(WF ) and P̃

(KF ). Since we have set P̃(KF ) constant
within a burst and Λñ constant for the whole transmission, see re-
marks at the end of section 3.1 and in section 3.2, the estimator com-
bination requires only one matrix inversion per burst, see eq. (26),
resulting in only a small computational overhead due to estimator
combination.
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Fig. 5. MSEE at assumed multipath profile

5. CONCLUSIONS AND OUTLOOK

In this paper, a combined channel estimation algorithm based on
Kalman filtering in the time and Wiener filtering in the frequency
domain is proposed. While the individual estimators perform rather
poorly, the combined estimation turned out to be very effective. Fur-
ther, robustness issues und computational complexity are briefly dis-
cussed. In future research we try to further improve the performance
by utilizing ML estimations of the CFR on the data subcarriers ob-
tained by the EM algorithm. Further the effects of phase noise and
non-perfect frequency synchronisation will be investigated.

6. REFERENCES

[1] Z. Wang and G. Giannakis, ”Wireless multicarrier communica-
tions”, IEEE Signal Processing Magazine, Vol. 17, no.3, pp. 29-
48, May 2000.

[2] IEEE Std 802.11a-1999, ”Part 11: Wireless LAN Medium Ac-
cess Control (MAC) and Physical Layer (PHY) specifications -
High-speed Physical Layer in the 5 GHz Band”.

[3] A. R. S. Bahai, B. R. Saltzberg and M. Ergen, Multi-Carrier
Digital Communications: Theory and Applications of OFDM,
Springer, 2004.

[4] T. Roman, M. Enescu and V. Koivunen, ”Time-domain method
for tracking dispersive channels in OFDM systems”, in Proc.
IEEE VTC Spring, Jeju, Korea, 2003.

[5] K. Han, S. Lee, J. Lim and K. Sung, ”Channel Estimation for
OFDM with Fast Fading Channels by Modified Kalman Filter”,
IEEE Trans. on Cons. Electr., vol. 50, no. 2. May 2004, pp. 443-
449.

[6] T. Kailath, A. Sayed and B. Hassibi, Linear Estimation, Prentice
Hall, 2000.

[7] X. Ma, H. Kobayashi and S. Schwartz, ”EM-based channel es-
timation algorithms for OFDM”, EURASIP Journal on Applied
Signal Processing, 2004:10, pp. 1460-1477.

[8] R. Duda, P. Hart, D. Stork, Pattern Classification, Wiley, 2001.
[9] M. Lasry and R. Stern, ”A posteriori estimation of correlated

jointly gaussian mean vectors”, IEEE Trans. Pattern Analysis
Machine Intell., vol. PAMI-6, no. 4. July 1984, pp. 530-535.

III  280


