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ABSTRACT

OFDM systems traditionally perform channel estimation relying on
known training sequences. However in wireless systems, perfor-
mance and mobility can be further enhanced by operating semi-
blind channel estimation refinement between reference symbols. A
channel tracking method based on a maximum a posteriori (MAP)
version of the Expectation-Maximization (EM) algorithm and on a
block representation of the channel variations has been proposed. It
performs better than already existing recursive algorithms with the
additional advantage of a linear arithmetic complexity. In this pa-
per, we study the matrix governing the behaviour of this method.
This leads to a practical rule for choosing optimally (with respect
to the convergence rate) the unique parameter of the method. The
proposed iterative procedure is applicable to both single carrier and
OFDM systems. Simulations are presented in the context of 5 GHz
WLANs, showing the practical interest of the method.

Index Terms— Communication systems, Convergence of nu-
merical methods

1. INTRODUCTION

Orthogonally Frequency DivisionMultiplexing (OFDM) has already
been accepted for Wireless Local Area Network (WLAN) standards
(IEEE 802.11a), High Performance Local Area Network Type 2
(HYPERLAN 2) and Japan’s Mobile Multimedia Access Commu-
nication (MMAC) systems. In OFDM systems, the effect of the
channel appear in the frequency domain as a simple scalar multipli-
cation. Classical methods for estimating these coefficients are based
on training sequences. In order to cope with Doppler effect due to
the mobility of wireless systems, reference sequences must be re-
peated quite often resulting in a significant loss in the useful bit rate.
An alternative is to estimate the channel based only on the observed
data. A common way to design blind estimation algorithms is to
use the Expectation Maximization (EM) algorithm. For likelihood
functions with multiple maxima, the convergence point depends on
the initial starting point and may be a local maximum. A semi-blind
estimation method consist in tracking the channel variations by re-
fining the channel coefficients blindly using the training sequence as
an initialization for the estimator, then local convergence problems
are avoided. EM-based blind or semi-blind channel estimation meth-
ods have already been proposed in the OFDM context [1],[2],[3] in-
cluding time and frequency correlations or not. We work within the
framework of slowly time-varying channels so that inter-channel in-
terference (ICI) can be neglected. In this case, the channel can be
considered constant during the transmission of a block of symbols
and the size of the block is related to the mobility. Based on this

idea, a maximum a posteriori (MAP) algorithm which takes into ac-
count a channel correlation model between the channel coefficients
of successive blocks has been proposed in [4]. The application of
a One Step Late (OSL) technique first presented in [5] permits to
turn the arithmetic complexity from quadratic to linear [6]. The con-
vergence of this new algorithm in our context is established and the
stationary points are also stationary points of the EM-MAP [6]. This
paper is the last step toward an efficient algorithm (EM-MAP) for
channel estimation with linear arithmetic complexity and enhanced
convergence rate. Indeed, we give here a closed-form expression for
the matrix governing the behaviour of the OSL algorithm and we
explain how to achieve the best convergence rate.

2. SYSTEMMODEL

2.1. Transmitter/Receiver structure

We consider a conventional cyclic prefix OFDM transceiver scheme.
In this model, some side entries of the size P IFFT are zero and
only Nc among the P available sub-carriers are effectively used
for transmission of information data. The block of data x =
[x0, ..., xNc−1]

T is modulated in the time domain by IFFT. The
channel is modelled by linear filtering. Some redundancy is intro-
duced into the transmitted signal by cyclic prefix extension so that
the overlapping introduced by the channel memory [h′

0, ..., h
′
L−1]

T

corresponds to that of a circular convolution between x and the chan-
nel. Consequently, the channel is viewed in the frequency domain,
after demodulation by the FFT, as parallel flat fading channels. Let
h′ = [h′

0, ..., h
′
P − 1]T denote the OFDM channel, the received sig-

nal y = [y1, ..., yNc]
T can be modelled by the following equation:

y = Diag(x)H′ + e (1)

where H′ = SFh′, F is the P × P Fourier matrix, S is the
Nc × P matrix selecting the Nc information sub-carriers, S =
[0
Nc,P−Nc

2
INc 0

Nc,P−Nc
2

], and e is a centered gaussian noise

vector with variance σ2e
Note that h′

i = 0 for i ≥ L, where L denote the cyclic prefix length.
The OFDM systems are designed such that L < P (in IEEE802.11a
L = P/4). The taps are assumed independent and Rayleigh dis-
tributed.

2.2. Channel Model

The channel is considered piecewise constant over a block of length
T (slow time-varying channel). Each channel coefficient is then
computed from T observation symbols which improves the quality
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of the MAP estimator. It appears that T = 20 is a good compro-
mise for Doppler speeds lower than 3m/s and T = 10 is a good
choice for Doppler speeds greater than 3m/s [7]. Let Hk denote
the channel coefficient of block k (on a given subcarrier),Hk is sup-
posed constant over a block of length T . The time variations can
be modelled using an autoregressive (AR) model of order 1, namely
Hk = αHk−1 + εk, where α is the time correlation coefficient and
εk is an additive white gaussian noise of mean 0 and variance σ2ε .The
parameter σ2ε is unknown and will be estimated by the proposed pro-
cedure. On the contrary, α is assumed to be known since α can be
perfectly determined thanks to Jakes’ model [8]. Using matrix nota-
tions, we get for a given sub-carrier

y = XH̃+ e (2)

MH = ε+ b (3)

where b is the contribution of the previous frame andM is a q × q
(q = Nc/T ) matrix given by

M =

0
BBBBBBB@

1 0 · · · · · · 0

−α 1
. . .

. . .
...

0
. . .

. . .
. . .

...
...

. . .
. . .

. . . 0
0 · · · 0 −α 1

1
CCCCCCCA

We suppose that the hidden variables xi, unknown at the receiver,
are uniformly distributed and take values on anM -size constellation
{s1, ..., sM}. Thus, the variable X takes one of the matrix values
Sm = Diag(sm1 , ..., smN ) indexed by m = [m1, ..., mN ]

T ∈
{1, ..., M}N .
Finally, if H = [H0, ..., Hq−1]

T denotes the vector of the channel
coefficients to be estimated, then we define H̃ = BH, where B is
theN×q matrix obtained from the tensorial product Iq×[1, ..., 1]T .
The joint probability of the observation and symbols reads

P (y,Sm |H, 1

σ2e
) = P (Sm)

1

σ2Ne
exp(− 1

σ2e
‖y−SmBH‖2) (4)

The prior probability modelling the variation of the channel reads

P (H, σ2ε) ∝ 1

σ2qε
exp(− 1

σ2ε
(H−M−1b)∗C−1(H−M−1b)) (5)

where σ2εC is the covariance matrix ofH andC−1 = MHM.

3. EM-MAP ALGORITHMWITH LINEAR COMPLEXITY

3.1. Review of the EM-MAP algorithm

In this section, we shall briefly review the EM-MAP
algorithm. Classically, the corresponding auxiliary
function reads [4]: Q(H, σ2e , σ

2
ε ,H

(i), σ
2(i)
e , σ

2(i)
ε ) =P

m P (Sm|y,H(i), σ
2(i)
e )[logP (y|Sm,H;σ2e) + logP (H, σ2ε) +

cst]. Using (4) and (5) and setting to zero the derivative of
Q(H, σ2e , σ

2
ε ,H

(i), σ
2(i)
e , σ

2(i)
ε ) with respect toH∗, we have

[
1

σ
2(i)
e

D

Γ
+

1

σ
2(i)
ε

C−1]H(i+1) =
1

σ
2(i)
e

V

Γ
+

1

σ
2(i)
ε

M∗b (6)

where the matrixD/Γ is a diagonal matrix with entries

Dj
Γ

=

(j+1)T−1X
l=jT

PM
m=1 ‖sm‖2P (sm|yl,H(i), σ

2(i)
e )PM

m=1 P (sm|yl,H(i), σ
2(i)
e )

(7)

and where the jth tap of the vector V
Γ
reads:

Vj
Γ

=

(j+1)T−1X
l=jT

PM
m=1 s

∗
my

2
l P (sm|yl,H(i), σ

2(i)
e )PM

m=1 P (sm|yl,H(i), σ
2(i)
e )

(8)

The current channel estimates are obtained by solving the linear sys-
tem (6) by a Gauss method. This step has a quadratic arithmetic
complexity.

By similar calculations, we obtain the update formulae of the
channel noise variance σ2ε and of the noise variance σ

2
ewhich have a

linear arithmetic complexity [4].

3.2. A Ones Step Late EM-MAP algorithm

We proposed in [6], a simplified EM-MAP algorithm exhibiting a
linear complexity. The simplification is based on the One Step Late
technique first presented by Green in [5]. This method consists in
computing the derivatives of the prior probability at the current value
of the parameters rather than at the new value. An intuitive justifica-
tion of this procedure is that if the algorithm converges slowly, the
derivative computed at iteration i and at iteration i + 1 will not be
much different [5]. Moreover, it can straightforwardly be seen that
this method has exactly the same fixed points than the original algo-
rithm. In the update equation (6), the quadratic complexity comes
from the non-diagonal matrix C−1. Following Green, we apply the
OSL procedure on the part of the gradient involvingC−1 to obtain a
less computationally demanding algorithm. After some calculations,
we obtain the new update equation for the channel coefficients

[
1

σ2
e(i)

D

Γ
+

β

σ
2(i)
ε

I]H(i+1) = 1

σ
2(i)
e

V
Γ
+ 1

σ
2(i)
ε

M∗b

− 1

σ
2(i)
ε

C−1H(i) + β

σ
2(i)
ε

H(i) (9)

where I denotes the identity matrix and β is a positive number cho-
sen to ensure the convergence of the iterative process (see below).
The update equations for the variances σ2e and σ

2
ε remain unchanged.

Clearly, both algorithms have the same fixed points and the arith-
metic complexity is linear.
Regarding the convergence of the method, we proved in [6] that the
proposed OSL algorithm is a particular case of the proximal point al-
gorithm (PPA). A generalized PPA is defined by the iterative process
[9]

Θ̂(i+1) = argmax
Θ
{ε(Θ)− γid(Θ , bΘ (i))} (10)

where γi is a sequence of positive number and d(Θ ,Θ(i)) is a
penalty function which verifies

d(Θ , bΘ (i)) ≥ 0 and d(Θ , bΘ (i)) = 0 iff Θ = bΘ(i) (11)

Then {ε(Θ(i)), i = 0, 1, 2...} is a nondecreasing sequence [9].
It turns out that the proposed OSL algorithm is a PPA with
Θ = (H, σ2e , σ

2
ε), ε(Θ) = log p(y|Θ) + log(Θ (ie ε(Θ) is

the a posteriori log-probability), γi = 1 and d(Θ , bΘ (i)) =h
p(x |y ,Θ(i)) ‖ p(x |y ,Θ)

i
+ 1

σ
2(i)
ε

(H−H(i))∗(βI−C−1 )(H−
H(i)). Since the first term of d(Θ , bΘ (i)) is a Kullback-Liebler
divergence, a sufficient condition for (11) to be met is β >
λmax(C

−1). It is well-known that λmax(C−1) > 1 + α2 +
2α cos( π

q+1
). Then a sufficient condition of convergence is β ≥

1 + α2 + 2α cos( π
q+1

). Note that the positivity of d(Θ , bΘ (i)) is
guaranteed because each term is a positive number. However, it may
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exists lower values of β such that d(Θ , bΘ (i)) is a positive number
even if the second term has a negative value.
At this point, we have proved that the proposed iterative procedure:
(i) converges and increases the value of the a posteriori probability
with the iterations, (ii) exhibits the same stationary point than the
EM-MAP, (iii) has a linear arithmetic complexity.
The scope of this paper is to derive an accelerated procedure with
the three nice properties listed above. This can be done by finding
the parameter β which optimises the convergence speed. In the next
section, we focus on the spectral radius of the matrix governing the
convergence of the proposed OSL algorithm.

4. CONVERGENCE STUDY

4.1. MatrixRβ governing the convergence

Following [5], we obtain the matrix Rβ governing the convergence
behaviour of the iterative procedure in (9) near to the fixed point

Rβ(H, σ
2
e , σ

2
ε ) = (B+E+

β

σ2ε
I)−1(E− C−1

σ2ε
+
βI

σ2ε
) (12)

where B+E is a diagonal matrix with entries

(B+E)j =
1

σ2e

(j+1)T−1X
l=jT

MX
m=1

‖sm‖2P (sm|yl,H, σ2e)

It turns out that E is also a diagonal matrix with entries :

Ej =
1
σ2e

P(j+1)T−1
l=jT (

PM
m=1 ‖sm‖2‖yl − smHj‖2P (sm|yl,H, σ2e)

−‖PM
m=1 s

∗
m(yl − smHl)P (sm|yl,H, σ2e)‖2)

Note that (B+E), E and β
σ2ε
I are both diagonal matrices with non-

negative entries. (The proofs are straightforward and are not reported
here. They are based on the independence of the emitted symbols).

4.2. Evolution of the Spectral radius ofRβ with β

The spectral radius of a matrix A is the positive number ρ(A) de-
fined as ρ(A) = max{|λi(A)| ; 1 ≤ i ≤ q} where λi(A) stands
for the ith eigenvalue of A [10]. It is well-known that an iterative
procedure is convergent if and only if the spectral radius of the ma-
trix governing its behaviour is lower than 1. Moreover, small spectral
radius leads to fast convergence. We then investigate the behaviour
of ρ(Rβ) with β for the matrixRβ given by (12).

Proposition 1 Suppose thatRβ = (B+E+ β
σ2ε
I)−1(E− C−1

σ2ε
+

βI
σ2ε

) where B+E, E and C−1 are symmetric and non-negative defi-

nite matrices of the same order, β > 0 and ρ(Rβ) < 1. Then:

ρ(Rβ1) ≤ ρ(Rβ2) iff 0 < β1 ≤ β2

Proof. Let λ denote any eigenvalue of Rβ1 then λ is solution of

det(E − C−1

σ2ε
+ β1I

σ2ε
− λ(B + E + β1

σ2ε
I)) = 0. Introduce now

β2 in the expression det((E − C−1

σ2ε
+ β2I

σ2ε
) + (β1−β2)I

σ2ε
− λ(B +

E + β2
σ2ε
I + (β1−β2)I

σ2ε
) = 0. Write B + E + β2

σ2ε
I = LLT where

L is square and non singular (Cholesky factorization [10]), then
det(L−1(E− C−1

σ2ε
+ β2I
σ2ε

)L−T −λI+(1−λ) (β1−β2)
σ2ε

L−1L−T ) =

0. So, there exists a non-zero vector u with uT (L−1(E − C−1

σ2ε
+

β2I
σ2ε

)L−T )u − λuTu = (1 − λ) (β2−β1)
σ2ε

uTL−1L−Tu. If λ were

greater than ρ(Rβ2) = L−1(E − C−1

σ2ε
+ β2I

σ2ε
)L−T we would

have (1 − λ) (β2−β1)
σ2ε

uTL−1L−Tu < 0 which is impossible since

1− λ > 0 and (β2−β1)
σ2ε

L−1L−T is non-negative definite. �
The matrix Rβ defined in 4.1 satisfies the assumptions of Proposi-
tion 1. Then, if the algorithm converges (ie ρ(Rβ) < 1), the best
choice for β in terms of convergence speed is the smallest value.
At this point, we do not know the range of values for β such that
ρ(Rβ) < 1. This is the scope of the next section.

4.3. Authorized range of values for β

The following proposition gives a necessary condition on β such that
ρ(Rβ) < 1.

Proposition 2 Suppose thatRβ = (B+E+ β
σ2ε
I)−1(E− C−1

σ2ε
+

βI
σ2ε

) where β > 0, C−1 is a symmetric and positive definite matrix

and B+E and E are diagonal matrices with non-negative entries.

Then, ρ(Rβ) < 1 if 2E +B+ 2βI−C−1

σ2ε
is positive definite.

Proof. Let λ denote any eigenvalue of Rβ then, there exists a non-

zero vector u with uT (E− C−1

σ2ε
+ βI
σ2ε

)u = λuT (B+E+ β
σ2ε
I)u.

If λ could be greater than 1, it would exist a non-zero vector u with
uT (B+ C−1

σ2ε
)u < 0 which is impossible since in that case the EM-

MAP of section 3.1 could diverge [6]
If λ could be smaller than−1, it would exist λ and a non-zero vector
uwith uT (2E+B+ 2βI−C−1

σ2ε
)u < 0which is impossible provided

that 2E+B+ 2βI−C−1

σ2ε
is positive definite. �

In consequence of this proposition, we see that the proposed
OSL algorithm can be accelerated by choosing β such that β >
1
2
λmax(C

−1 − σ2ε(B + 2E)). Remember that B and E are diag-
onal matrices whereas C−1 is tridiagonal meaning that we need to
compute the highest eigenvalue of a tridiagonal matrix. This can be
done using Givens (or bisection) method [10]. However, the matri-
ces E and B are function ofH and σ2e . Then β should be computed
at each iteration. To avoid this extra computational cost, the lower
bound on β is released in order to obtain a new bound independent
ofH and σ2e .
Since B+E and E are diagonal matrices with non-negative entries
then 2E+B is also a diagonal matrix with non-negative entries. Then
λmax(C

−1 − σ2ε(B + 2E)) ≤ λmax(C
−1). Finally, the optimal

value of β in terms of computational cost and convergence rate is:

β =
1 + α2 + 2α cos( π

q+1
)

2

We will see in the next section that choosing β = βlow =
1+α2+2α cos( π

q+1 )

2
rather than the canonical choice β = βhigh =

1 + α2 + 2α cos( π
q+1

) leads to a significant gain in the number of
iterations.

5. SIMULATIONS

In this section, we illustrate the behaviour of the proposed algorithm
in the specific context of HIPERLAN/2 broadband wireless com-
munication standard, which is similar to IEEE802.11a and MMAC.
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EM-MAP OSL (βhigh) OSL (βlow)

3.6057e-2 3,046e-2 3.5898e-2

Table 1. BER comparison - SNR=10dB - Doppler Speed: 3m/s

HIPERLAN/2. The cyclic prefix is 16 samples long and the num-
ber of carriers is Nc = 64. A rate R = 1/2, constraint length
l = 7 Convolutional Code (CC) (171/133) is used before bit in-
terleaving followed by 16-QAM mapping. Only 48 carriers are ef-
fectively used. Monte Carlo simulations are run and averaged over
5000 realizations of a BRAN C frequency selective channel in or-
der to obtain BER curves. A classical Jake’s Doppler spectrum and
Rayleigh fading statistics are assumed for all taps. Speeds are sup-
posed to be known from the receiver. Each frame processed contains
2 known training symbols, followed by 100 OFDM data symbols.
The bit probabilities P (bml ) estimates are performed in the E-step
by two iterations of the turbo demodulation process. The estimation
process is repeated until the mean square errors of the channel coef-
ficients matrix and the channel noise variance are lower than 10−8

simultaneously. We compare the performance in term of channel
estimation between the EM-Block algorithm which do not use any
prior information, the EM-MAP algorithm and the OSL algorithm
(the proposed one) with β set to βlow and βhigh.
The OSL algorithm is expected to have the same stationary points
than the EM-MAP algorithm for any β (as long as the OSL algo-
rithm converges). This is confirmed by the results in Table 1 where
we show the BER for a SNR of 10dB and a Doppler speed of 3m/s.
Figure 1 depicts the mean square error as a function of SNR. We
can see that the OSL algorithm performs better than the EM-Block
algorithm and has the same performance than the initial EM-MAP
algorithm.
This simulation confirm that the OSL algorithm has the same

10 11 12 13 14 15 16 17 18
10

4
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2
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1

SNR

M
S

E

16QAM/ Random inter/ Gray/ Doppler 3m/s

EM Block
EM OSL
EM MAP2

Fig. 1. MSE vs SNR - Comparison of the EM-Block, EM-MAP and OSL
algorithms - Doppler speed: 3m/s

behaviour in term of estimation accuracy than the EM-MAP with
the additional advantage of a linear computational complexity. In
this paper, we have proved that the OSL algorithm converges more
quickly with βlow than with any other greater value. The experiment
described below quantify this gain. Let Nβlow and Nβhigh denote
the number of iterations until convergence (MSE ≤ 10−8) for the
OSL algorithm respectively with βlow and βhigh. The quantity Igain

is defined as Igain =
Nβhigh

−Nβlow
Nβhigh

. Figure 2 depicts Igain versus

SNR for α = 0.99 and α = 0.997. We observe in fig 2 that we can
save up to 35% of the iterations thanks to an optimal choice of the
parameter.
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Fig. 2. Number of iterations saved with β = βlow compared to
β = βhigh, α = 0.99 (right), α = 0.997 (left).

6. CONCLUSION

In this paper, we have studied the convergence behaviour of an OSL
algorithm. We have shown that the convergence speed of this method
could be enhanced by a judicious choice of the main parameter of
the algorithm. This can lead to a saving of the iterations close to
35% compared with the canonical choice. The proposed method
presents the following nice properties: an efficient channel estima-
tion method, a low arithmetic complexity and an enhanced conver-
gence speed.
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