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ABSTRACT

We present a symbol-by-symbol approach to the problem of cancel-
ing known interference at the transmitter in a communication sys-
tem. In the envisioned system, the modulator maps an informa-
tion symbol (taken from a nite alphabet) and an interference sym-
bol (from the complex eld) onto a transmitted constellation point.
The demodulator picks the information symbol (as a function of
the received symbol) which minimizes the average error probability.
We nd the optimal modulator–demodulator pair, in the minimum-
probability-of-symbol-error sense, via an iterative optimization pro-
cedure, for xed average transmit power. We illustrate that the new
scheme can perform close to the no-interference bound, and in par-
ticular that it outperforms Tomlinson–Harashima precoding, which
is a classical but suboptimal solution to the problem under study.

Index Terms— interference suppression, modulation

1. INTRODUCTION

Costa [1] has shown that the achievable rates of a Gaussian chan-
nel remain unchanged if the decoder observes the transmitted code-
word in the presence of additive Gaussian interference, provided that
the encoder knows the interference signal non-causally. That is, the
transmitter can effectively cancel the interference, without increas-
ing the amount of transmit power used. Thus interference, no matter
how strong, is never a limitation for a communication link, as long
as the interfering signal is known to the transmitter.

Coding/modulation design for known interference at the trans-
mitter is important in a number of contexts, for example when doing
precoding for the downlink multiuser MIMO channel [2, 3, 8]. Con-
sequently the problem has stimulated much research. The achiev-
ability proof in [1] is based on random binning over a set of code-
vectors that approximate possible interference sequences, with each
bin representing a value for the information variable to be sent. The
codeword actually transmitted is then obtained as a linear combina-
tion of a codevector inside the bin speci ed by the data, and the ob-
served sequence of interference samples. This strategy has inspired
practical coding schemes, e.g. [4, 5], which can achieve rates close
to capacity, however at a rather high computational cost.

In this paper we consider a new approach to interference cancel-
lation at the transmitter. As opposed to [4,5] which aimed for achiev-
ing capacity, our goal is to examine what one can do under a very
with tight constraint on complexity. Namely, we devise a method
that performs coding over one single (complex) dimension—in fact,
our focus is on modulation rather than on coding. More precisely,
we cancel interference on a symbol-by-symbol basis, by choosing
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Fig. 1. System model.

the transmitted symbol at a given time to be a function of an infor-
mation symbol and of the interference symbol that affects the chan-
nel at that given time instance. We present a design methodology
which attempts to nd the jointly optimal modulator–demodulator
pair for interference with given statistics, and show that the optimal
transmitter and receiver in fact reduce to a table-lookup. Naturally,
our strategy is inferior to that of [4, 5] (since suppressing the inter-
ference completely, as in [1], requires coding over in nitely many
dimensions). We will see, however, that even with a computation-
ally very simple method such as the one we suggest, we can achieve
impressive performance.

Most previous work on transmitter interference cancellation is
based on coding over high-dimensional lattices [4,5] or trellises [11].
Not much previous work exists on one-dimensional transmitter in-
terference cancellation, i.e., using modulation rather than coding. A
special case of the precoding structure that we propose here, how-
ever, is the Tomlinson–Harashima precoder (THP) [6, 7] (see Sec-
tion 5). In a related previous paper [10] we considered the same
problem but only for the special case of binary signaling with binary
interference.

2. MODEL AND PROBLEM FORMULATION

Consider the system depicted in Figure 1. The goal is to commu-
nicate an information symbol ω over a discrete-time channel (one
realization of ω is transmitted per channel use), as reliably as pos-
sible. We model ω as a discrete random variable, uniformly dis-
tributed over IM � {1, . . . , M}. The transmission is subject to
additive interference S and additive noise W . The interference S is
a continuous complex-valued random variable with probability den-
sity function (pdf) fS . The noise W is zero-mean complex Gaussian
with variance σ2. The transmitter (but not the receiver) observes the
interference symbol S. The noise symbol W , however is unknown
to both transmitter and receiver. The random variables ω, S and W
are assumed mutually independent.

At the transmitter, the modulator α : IM × C → C maps an
information symbol ω = i ∈ IM and an interference symbol S = s
onto a transmitted symbol x = x(i, s) ∈ C. The modulator mapping
α satis es the following average power constraint

E|X|2 =
1

M

MX
i=1

E|x(i; S)|2 ≤ P (1)
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where the second expectation is taken with respect to fS .
At the receiver, the demodulator (detector) β : C → IM looks

at the received symbol

Y = X + S + W = x(ω,S) + S + W (2)

and produces an estimate ω̂ = β(Y ) of the transmitted symbol. The
resulting average symbol error probability is Pe = Pr(ω̂ �= ω).

The problem we consider is the optimal design of the modulator-
demodulator pair (α, β) in the following sense: nd the pair (α, β)
which minimizes Pe subject to the power constraint (1).

3. MODULATOR AND DEMODULATOR DESIGN

The modulator–demodulator design problem is nonlinear and non-
convex. Similar to classical designs for related problems, e.g. opti-
mal design of vector quantizers [9], we formulate necessary condi-
tions for optimality by presenting the optimal α given β, and vice
versa.

The Optimal Demodulator for a Fixed Modulator. Assume
that α is given and satis es the power constraint (1). Then it is clear
that the optimal demodulator is de ned by the maximum-likelihood
decision rule

ω̂ = arg max
i∈IM

fY |ω(y|i) (3)

where fY |ω is the conditional pdf of Y given ω. (If soft decisions
are desired, for example when the system in Figure 1 is concatenated
with an “outer” code, then the actual values of {fY |ω}, not only the
index of the maximizing ω, will be of interest.) Since the noise is
Gaussian, we get

fY |ω(y|i) =

Z
C

fS(s)fY |ω,S(y|i, s)ds

=
1

πσ2

Z
C

fS(s) exp

„
− 1

σ2
|y − s− x(i, s)|2

«
ds (4)

and the optimal decision

ω̂(y) = arg max
i∈IM

Z
C

fS(s) exp

„
− 1

σ2
|y − s− x(i, s)|2

«
ds (5)

The Optimal Modulator for a Given Demodulator. To any
given demodulator β, one can associate decision regions Bi. The ith
decision region is the set of y for which the demodulator decides on
the information symbol ω = i:

Bi = {y : β(y) = i}, i = 1, . . . , M (6)

For a given demodulator with decision regions {Bi}, the average
symbol error probability is

Pe = 1− 1

M

MX
i=1

Z
Bi

fY |ω(y|i)dy (7)

Taking the power constraint (1) into account via a positive Lagrange
multiplier λ1, a proper objective function to determine the optimal
modulator hence is

1

M

MX
i=1

„Z
Bi

fY |ω(y|i)dy − λ1

Z
C

|x(i, s)|2fS(s)ds

«
(8)

The optimal modulator maximizes this objective function, for λ1 >

0. (The Lagrange multiplier λ1 must be chosen such that the power
constraint is satis ed.) Hence, observing that

Z
Bi

fY |ω(y|i)dy =
1

πσ2

Z
C

fS(s)

·
jZ

Bi

exp

„
− 1

σ2
|y − s− x(i, s)|2

«
dy

ff
ds (9)

with fS(s) ≥ 0, and absorbing positive constants into a new multi-
plier λ2 > 0, it is clear that given ω = i and S = s the modulator
should choose x ∈ C to maximizeZ

Bi

exp

„
− 1

σ2
|y − s− x|2

«
dy − λ2|x|2 (10)

This leads to the following expression

x(i, s)

= arg max
x∈C

˘
Pr(Y ∈ Bi|ω = i, S = s, x(i, s) = x)−λ3|x|2

¯
= arg max

x∈C

˘
Pr(x + s + W ∈ Bi)− λ3|x|2

¯
(11)

Equation (11) describes the optimal modulator α for a given demod-
ulator (i.e., a given set of decision regions {Bi}), and with λ3 > 0.
The interpretation of (11) is: Given ω = i and S = s, x should be
transmitted such that the probability of observing Y in the correct
decision region is maximized, subject to limiting |x|2 to satisfy the
power constraint.

An alternative expression for x as a function of ω = i and S = s
can be obtained by taking derivatives of (10) with respect to x and
equating the result to zero. Doing so gives

1

σ2

Z
Bi

(y − s− x) exp

„
− 1

σ2
|y − s− x|2

«
dy = λ2x (12)

or equivalently

λ4x =

R
Bi

y exp
`− 1

σ2 |y − s− x|2´ dyR
Bi

exp
`− 1

σ2 |y − s− x|2´ dy
− s

= E[Y |S = s, ω = i, x(i, s) = x, Y ∈ Bi]− s

= x + E[W |W ∈ Bi − x− s] (13)

with λ4 ≥ 1 and where Bi − x − s is the set {w : w + x + s ∈
Bi}. The expression (13) is useful when numerically determining
the optimal modulator, since it can be iterated to solve for x; see
Section 4.

4. IMPLEMENTATION ASPECTS

Modulation and Demodulation. In principle, the modulator and
the demodulator can be implemented directly as formulated in Sec-
tion 3: Modulation amounts to solving the optimization problem in
(10)–(11) for an observed pair (ω, S) = (i, s). Likewise, the de-
modulator can be implemented by computing the integral over s in
(5) numerically. However, the computational complexity associated
with this approach is rather high.

An alternative procedure for computing the optimal modulator
is based on (13), as follows. For λ4 ≥ 1, and for an observed pair
(ω,S) = (i, s), rst guess an initial value x0. For x = x0, compute
the right hand side (rhs) of (13). Denote the result z1, and set x1 =
z1/λ4. Repeat this computation by using x = x1 in the rhs of (13);
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denote the result z2, and set x2 = z2/λ4. Iterate until xm+1 ≈ xm.
Our numerical experiments have shown that this approach converges
relatively fast.

Modulator Based on Quantization and Table-Lookup. While
computing x = α(i, s) for (ω,S) = (i, s) is conceptually straight-
forward, it may be infeasible if computational complexity is a con-
cern since a new x must be computed for each observed s. An al-
ternative is to rst quantize S into an integer J ∈ IK (assuming K
quantization levels) and approximate the modulator α with a table-
lookup, which maps ω and J onto a modulated symbol x = γ(i, j)
for (ω, J) = (i, j).

The main advantage of the table-lookup approach is that the ta-
ble γ can be pre-computed, and the complexity of modulation hence
effectively reduces to that of the quantization of s. For a suf ciently
large K, the quantizer can without loss be implemented as uniform
in the real and imaginary components of s. For small K, using a two-
dimensional vector quantizer [9] may give substantial performance
gains. In fact, for a given K, one can design an optimal quantizer
for s, this however is outside the scope of the paper. Our simulation
results, in Section 5, assume uniform quantization.

Demodulator Based on Quantization and Table-Lookup.
The demodulator (5) can also be implemented via a table-lookup,
thereby avoiding to perform a numerical integration for each re-
ceived sample. This is somewhat simpler than to implement the
modulator, since all that has to be done is to quantize y; fY |ω is
then a function of the quantization index. However, the lookup-table
must be recalculated when the encoder mapping α, the interference
distribution fS or the noise variance σ2 changes. We have not pur-
sued this approach further.

Iterative System Design. The problem of jointly designing the
optimal modulator α and the demodulator β is related to that of
optimal quantizer design [9], and it is a non-convex problem. We
propose an iterative approach based on (13). Using (13) we do not
implement modulation directly, but instead we indirectly specify an
overall system iteration. Let α(0) be an initial choice for the modu-
lator, based for example on a standard constellation to de ne x(i, 0)

and letting x(i, s) = x(i, 0) for all s. Let B(0) be the corresponding
decision regions, de ned using (5). Let m = 1.

1) Let z(i, s) denote the rhs of (13), when evaluated for ω = i and
S = s using α(m−1) and B(m−1) .

2) Specify a new modulator α(m) as x(i, s) = z(i, s)/λ4, and let
B(m) denote the optimal demodulator for α(m).

3) Set m → m + 1 and repeat from 1) until convergence.

5. NUMERICAL RESULTS

Here we present numerical results comparing our optimized mod-
ulator to 1) regular PAM without precoding, 2) PAM with THP,
and 3) PAM over a channel without interference, or equivalently
a system where the interference is known at the demodulator. In
all results, the information symbol ω takes on M equally probable
values. We consider only one-dimensional modulation (transmis-
sion on the I-carrier), however, since the I and Q channels are in-
dependent if the receiver maintains perfect phase synchronization,
all results extend directly to I/Q modulation. The M -PAM refer-
ence scheme, used in cases 1) and 3), is uniform and has amplitude-
levels X ∈ {±p,±3p, . . . ,±(M − 1)p}, with p chosen such that
E[X2] = P . (Strictly speaking, a uniform constellation is subopti-
mal for M > 2, and a gain could be obtained by using non-uniform
M -PAM instead. This potential gain is very small, however.)

2 4 6 8 10

-4

-3

-2

-1

δ = 0.8

δ = 0.5

SINR [dB]

opt1

opt2

Tomlinson–Harashima

Fig. 2. Results with binary (M = 2) signaling, log10 Pe vs SINR
in dB. Dashed curves from above: 2-PAM, 2-PAM with interference
removed, δ = 0.5 and δ = 0.8, respectively. ’opt1’ = optimized
modulator–demodulator, s quantized with K = 16. ’opt2’ = opti-
mized modulator–demodulator, s quantized with K = 256.

In the simulations, we de ne the signal-to-noise-plus-
interference ratio (SNIR) as P/(E[S2] + E[W 2]) = P/η2 where
η2 = σ2 + E[S2] is the total noise-plus-interference power. For a
given η2, we can write E[S2] = δη2 and E[W 2] = σ2 = (1−δ)η2,
for some δ ∈ [0, 1]. By varying δ from 0 to 1, we can choose how
much of the total noise-and-interference power η2 that is allocated
to S and to W , respectively. That is, δ is a measure of how much of
the total noise-and-interference is known to the transmitter.

For optimizing the modulator–demodulator pair, we use the al-
gorithm in Section 4. To initialize the design, that is, to provide
an initial mapping α(0), we used all of the following three differ-
ent schemes: uniform M -PAM, uniform M -PAM + Gaussian noise
(several different variances tested), and Tomlinson–Harashima pre-
coding (see below). Then the modulator that performed the best af-
ter the iterative design was implemented for the simulations. We
noted that these different initializations resulted in quite similar per-
formance, though.

Benchmark: M -PAM with THP. As a reference, we have
implemented traditional THP as de ned in the following. Each
information symbol ω is mapped onto an M -PAM symbol, z ∈
{±q,±3q, . . . ,±(M − 1)q}. Based on S = s, THP is then per-
formed via x(ω, s) = (z − s) mod Λ where Λ = [−Mq, +Mq].
The constant q is chosen such that E[x2] = P (the expectation is
over ω and S). As in the traditional scheme, demodulation is imple-
mented via

ω̂ = arg min
ω
|(y mod Λ) − z(ω)|2 (14)

Strictly speaking, this receiver is suboptimal (the optimal receiver is
obviously the ML receiver (5)). However, the performance of (14) is
close to the optimal receiver for all cases of practical interest.

Results with Binary (M = 2) Signaling. Figure 2 shows the
performance in terms of Pe versus the SNIR for M = 2. The
transmission is real-valued and S and W are independent, zero-
mean Gaussian. The gure shows the performance for δ = 0.5 and
δ = 0.8. The gure also demonstrates the performance of 2-PAM
with THP. Additionally the gure shows the performance of 2-PAM
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Fig. 3. Results with quaternary (M = 4) signaling, log10 Pe vs
SINR in dB. Dashed curves from above: 4-PAM, 4-PAM with inter-
ference removed, δ = 0.5 and δ = 0.8, respectively. ’optimal’ =
optimized modulator–demodulator, s quantized with K = 16.

with no precoding as well as with perfect interference cancellation
in the receiver. To implement the modulator mapping the interfer-
ence was quantized, as discussed in Section 4. For δ = 0.5 we used
K = 24 = 16 levels, and for δ = 0.8 we used K = 16 as well
as K = 256. Notice that this way of implementing the modulator
results in KM possible values for the transmitted x. Optimization
of the modulator and demodulator was performed for several combi-
nations of (δ, η2); each combination corresponds to one solid dot in
the gure.

At all values of the SINR, our optimized modulator outperforms
THP. The price paid is a considerable increase in the design com-
plexity, and some increase in demodulation complexity (evaluating
(5) requires either a numerical integration or a table-lookup). We
also observe that increasing from K = 16 to K = 256 quantization
values for s results in a quite modest improvement. Hence, we ex-
pect that relatively low resolution for the quantization will suf ce in
practice.

Results with Quaternary (M = 4) Signaling. We next explore
the performance with M = 4, see Figure 3. For δ = 0.5 our optimal
modulator–demodulator performs close to the system for which the
receiver knows the interference. This is a very encouraging result
as it shows that at least for quaternary modulation (per dimension),
almost perfect transmitter interference cancellation can actually be
achieved via one-dimensional processing (as opposed to in nitely-
dimensional coding, as in [1, 4, 5]). For δ = 0.8 the gap to optimal
performance is somewhat larger. In general, similar conclusions as
those for Figure 2 hold.

Results with Octonary (M = 8) Signaling. Finally, in Figure 4
we show performance with M = 8. The interference is quantized
using resolution K = 64. Again, quite similar results apply. The
major difference compared to the cases M = 2 and M = 4 is that
the optimized system is now performing very close to the optimal,
for both δ = 0.5 and δ = 0.8. However, this conclusion is also
beginning to hold for the THP. In general, by comparing Figures 2, 3
and 4, we see that the relative gain of using our optimized modulator
instead of THP is larger for small constellations. This is natural, as
it is known that THP is closer to optimal for large M [2].
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Fig. 4. Results with octonary (M = 8) signaling, log10 Pe vs SINR
in dB. Dashed curves from above: 8-PAM, 8-PAM with interference
removed, δ = 0.5 and δ = 0.8, respectively. ’optimal’ = optimized
modulator–demodulator, s quantized with K = 64.

6. CONCLUDING REMARKS

The main advantage of our proposed scheme is the low cost in com-
plexity paid for a relatively good performance. The transmitter and
the receiver can be implemented as a simple table-lookup. In terms
of performance, our scheme outperforms Tomlinson–Harashima
precoding and except for binary signaling, it also performs very
close to the no-interference bound. An additional advantage of our
method, which stands in contrast to most previous work, is that one
can easily perform outer coding over the equivalent discrete channel
de ned by the modulator–demodulator pair in Figure 1.
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