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ABSTRACT

Linear MIMO transceivers (composed of a linear precoder at the
transmitter and a linear equalizer at the receiver) are a low-complexity
approach to optimize the spectral efficiency and/or the reliability of
the communication, when perfect channel state information is avail-
able at both sides of the link. The design of linear transceivers has
been extensively studied in the literature with a variety of cost func-
tions. In this paper we focus on the minimum BER design, and show
that the common practice of fixing a priori the number of transmitted
data symbols per channel use inherently limits the diversity gain of
the system. Finally, we propose a minimum BER linear precoding
scheme that achieves the full diversity of the MIMO channel.

Index Terms— minimum BER design, linear MIMO transceiver,
analytical performance, spatial multiplexing

1. INTRODUCTION

The increasing demand of higher data rates, specifically in wireless
communications, has motivated interest in the design and analysis of
multiple-input multiple-output (MIMO) systems. Specifically, when
channel state information is accessible simultaneously at both sides
of the link, the MIMO system can be adapted to each channel real-
ization to maximize the spectral efficiency and/or reliability of the
communication. Theoretically, the optimal transmission is given by
a Gaussian signaling with a waterfilling power profile over the chan-
nel eigenmodes [1]. From a more practical standpoint, however,
the ideal Gaussian codes are substituted with practical constellations
(such as QAM constellations) and coding schemes. To simplify the
study of such a system, it is customary to divide it into an uncoded
part, which transmits symbols drawn from some constellations, and
a coded part that builds upon the uncoded system. Although the ulti-
mate system performance depends on the combination of both parts,
it is convenient to consider the uncoded and coded parts indepen-
dently to simplify the analysis and design.

This paper focuses on the uncoded part of the system and, specif-
ically, on the employment of linear transceivers (composed of a lin-
ear precoder at the transmitter and a linear equalizer at the receiver).
The design of linear transceivers has been extensively treated in the
literature according to a variety of criteria [2, 3, 4, 5]. This paper
concentrates only on the design that minimizes bit error probability
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(BER), since it measures the ultimate performance of an uncoded
digital communication system.

First, we present the minimum BER design obtained assum-
ing that the number of data symbols per channel use (denoted by
K) has been previously chosen and equal symbol constellations are
employed. The minimum BER linear transceiver with fixed and
equal constellations (minBERfe), derived simultaneously in [4] and
[5], transmits a rotated version of the data symbols through the K
strongest channel eigenmodes in a waterfilling fashion. Our ana-
lytical performance characterization shows that the diversity gain of
this scheme is given by (nT − K + 1)(nR − K + 1), where nT

is the number of transmit and nR the number of receive antennas.
This suggests that the average BER could be improved by introduc-
ing the number of active substreams in the design criterion. This
extra degree of freedom is utilized in the proposed scheme by fixing
the global rate but allowing the use of an adaptive symbol constel-
lation to compensate for the change in number of active substreams.
Besides, and for the sake of simplicity, the constellation is assumed
to be the same in all substreams. This scheme is named minimum
BER linear transceiver with fixed rate and equal constellations (min-
BERe), and, in contrast to the minBERfe design, does fully exploit
the diversity gain nRnT of the MIMO channel. Note that a more
general setup would also adapt the individual modulations without
the equal constellations constraint. However, even the minimum
BER linear transceiver with fixed and unequal constellations can not
be optimally obtained in closed form [6], and the proposed minBERe
scheme already achieves the full diversity of the channel with low
complexity.

The rest of the paper is organized as follows. Section 2 is de-
voted to introducing the signal model and presenting the average
BER performance measure. The minimum BER linear transceiver
with fixed and equal constellations design and performance analysis
problem is addressed in Section 3 and with fixed rate and equal con-
stellations in Section 4. Finally, we summarize the main contribution
of the paper in the last section.

2. SYSTEM MODEL AND PERFORMANCE MEASURE

The signal model corresponding to a transmission through a general
MIMO channel with nT transmit and nR receive antennas is

y = Hx + w (1)

where x ∈ C
nT×1 is the transmitted vector, H ∈ C

nR×nT is
the channel matrix, y ∈ C

nR×1 is the received vector, and w ∈
C

nR×1 is a spatially white zero-mean circularly symmetric com-
plex Gaussian noise vector normalized so that E{ww†} = InR .
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The channel matrix H contains the complex path gains [H]ij be-
tween every transmit and receive antenna pair. We adopt an uncorre-
lated Rayleigh (Ricean) flat-fading channel model and, consequently
these coefficients are independent complex Gaussian random vari-
ables with zero (non-zero) mean and unit variance.

Suppose that the MIMO communication system is equipped with
a linear transceiver, then the transmitted vector is given by

x = BKsK . (2)

where BK ∈ C
nT×K is the transmit matrix (precoder) and the data

vector sK ∈ C
K×1 gathers the K ≤ min{nT , nR} data sym-

bols to be transmitted (zero mean, with unit energy and uncorre-
lated, i.e. E{sKs†K} = IK). We consider a fixed-rate data trans-
mission and, hence, each data symbol sk,K is drawn from a fixed
MK -dimensional constellation such that the total transmission rate
R = K log2 MK

1 is fixed for all channel realizations and all possi-
ble values of K. The transmitted power is constrained such that

E
˘‖x‖2¯ = Tr{BKB†K} ≤ snr (3)

where snr is the average SNR per receive antenna. The estimated
data vector at the receiver is

ŝK = A†Ky = A†K (HBKsK + w) . (4)

where A†K ∈ C
K×nR is the receive matrix (equalizer).

The ultimate performance of MIMO linear transceivers is mea-
sured by the BER averaged over the K data symbols to be transmit-
ted:

BERK(snr) =
1

K

KX
k=1

BERk,K(ρk,K) (5)

where ρk,K is the instantaneous SNR and BERk,K(ρk,K) is the in-

stantaneous BER of the kth substream (out of K active) given by

BERk,K(ρk,K) =
αK

log2 MK
Q
“p

βKρk,K

”
(6)

and αK and βK are parameters of the MK -dimensional constellation
(see e.g. [7]).

3. MINIMUM BER LINEAR TRANSCEIVER WITH FIXED
AND EQUAL CONSTELLATIONS

3.1. Linear Transceiver Design

The general problem of designing the optimal linear MIMO trans-
ceiver (when fixing K beforehand) is formulated in [4] as the min-
imization of a certain cost function of mean-square errors (MSEs),
since the BER can be easily related to the MSE. Specifically, [4]
shows that the optimum receive matrix AK , for a given transmit
matrix BK , is given by the Wiener filter solution:

AK =
“
HBKB†KH† + InR

”−1

HBK (7)

independently of the design cost function. Under the minimum BER
design criterion, the precoder matrix BK is obtained as

BK = arg min
BK

BERK(snr) (8)

1Note that K and log2 MK have to be integers.

subject to the power constraint in (3). The optimum transmit matrix
BK is given by [4, 5]

BK = UK

√
PKQK (9)

where UK ∈ C
nT×K has as columns the eigenvectors of H†H cor-

responding to the K largest nonzero eigenvalues λ1 ≥ · · · ≥ λK ,

QK ∈ C
K×K is a unitary matrix such that

“
IK + B†KH†HBK

”−1

has identical diagonal elements (see [4] for details), and PK ∈
C

K×K is a diagonal matrix with diagonal entries equal to

pk,K =
“
μλ
−1/2
k − λ−1

k

”+

k = 1, 2, . . . , K (10)

where μ is chosen to satisfy the power constraint in (3) with equality.

3.2. Analytical Performance

Given the optimum transmit matrix in (9) and the optimum receive
matrix in (7), the communication process is diagonalized up to a
specific rotation that forces all data symbols to have the same MSE
[4]

mseK � msek,K =
1

K

KX
i=1

(pi,Kλi + 1)−1
(11)

and, hence, the same instantaneous SNR [4]

ρK � ρk,K = mse−1
K − 1 =

 
1

K

KX
i=1

(pi,Kλi + 1)−1

!−1

− 1.

(12)
Thus, the minBERfe design transmits a rotated version of the K
data symbols through the K strongest channel eigenmodes, so that
all data symbols experience the same BER performance. The instan-
taneous BER averaged over the K data symbols defined in (5) is then
given by

BERK(snr) =
αK

log2 MK
Q
“p

βKρK

”
. (13)

Now, taking into account different channel realizations, the average
BER is obtained as

BERK(snr) = E {BERK(snr)}
=

αK

log2 MK

Z ∞

0

Q
“p

βKρ
”

fρK (ρ)dρ(14)

where fρK (ρ) is the pdf of the instantaneous SNR, ρK , given in
(12). Under the Rayleigh (Ricean) fading assumption, ρK is a func-
tion of the K strongest eigenvalues of the Wishart [8] distributed
channel matrix H†H. Since tractable close-form expressions for the
marginal pdfs of the ordered eigenvalues have not been derived, the
average BER in (14) cannot be analytically computed. A convenient
method to find a simple performance measure is to allow a certain
degree of approximation and shift the focus from exact performance
to large SNR performance as done in [7, 9].

Based on the previous work by Wang and Giannakis in [10], the
average BER versus SNR curves of the channel eigenmodes have
been characterized in terms of two key parameters (the array gain
and the diversity gain) for a Rayleigh fading channel in [7] and for a
Ricean fading channel in [9]. The diversity gain represents the slope
of the BER curve at high SNR and the array gain (also known as
coding gain) determines the horizontal shift of the BER curve. The
following theorem extends the previous procedure to characterize
the average BER performance of the minBERfe design in which the
number of active substreams is fixed beforehand.
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Theorem 1 The average BER attained by the minimum BER linear
transceiver with fixed and equal constellations (assuming K data
symbols per channel use) in an uncorrelated Rayleigh or Ricean flat-
fading MIMO channel is

BERK(snr) = (Ga · snr)−Gd + o
“
snr−Gd

”
(15)

where the diversity gain is given by

Gd = (nT −K + 1)(nR −K + 1) (16)

and the array gain can be bounded as

Ga,lb < Ga < Ga,ub (17)

where Ga,lb is the global array gain when using a diagonal scheme
with a uniform power allocation and is given by [7]

Ga,lb =
βK

K

„
αK

K log2 MK

aK2dK

√
π(dK + 1)

«−1/(dK+1)

(18)

and Ga,ub is defined as

Ga,ub = βK

„
αK

log2 MK

aKI(dK , βK(K − 1))√
2π(dK + 1)

«−1/(dK+1)

(19)
where I(d, βφ) is2

I(d, βφ) =

Z ∞

√
βφ

e−
x2
2
`
x2 − βφ

´(d+1)
dx. (20)

The parameters aK and dK model the pdf of the Kth ordered chan-
nel eigenvalue as

fλK (λK) = aKλdK
K + o(λdK

K ) (21)

and their expressions are given in [7] for the Rayleigh fading and in
[9] for the Ricean fading channel.

Proof: See [11].

It is important to note that the diversity gain given in Theorem
1 coincides with the diversity gain achieved when transmitting K
symbols in parallel with equal power over the K strongest channel
eigenmodes [7, 9]. Hence, Theorem 1 shows that the minBERfe de-
sign does not provide any diversity advantage with respect to diago-
nal schemes with uniform power allocation policies but only a higher
array gain. This statement is confirmed by Fig. 1, where we show the
average BER performance of the minBERfe scheme (solid lines) and
of the diagonal scheme with uniform power allocation (dashed lines)
in a Rayleigh flat-fading channel. We also provide the parameterized
upper and lower bounds (dash-doted lines) derived from Theorem 1.
It turns out that the proposed array gain upper bound is in fact very
tight and approximates perfectly the high SNR performance.

Intuitively, the performance of this scheme is limited by the in-

herent performance of Kth channel eigenmode, because the design
cost function in (5) is evaluated for the K data symbols to be trans-
mitted, regardless whether pK,K = 0 or not. This reveals that the
average BER can be improved by introducing K into the design cri-
terion, as analyzed in the following section.

2A closed-form expression for this integral does not exist for a general
value of the parameter d; however, it can be easily evaluated for the most
common values of d (integers).
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Fig. 1. Simulated average BER and parameterized average BER
bounds (dash-dotted) of the minBERfe linear transceiver (solid)
and the diagonal linear transceiver with uniform power allocation
(dashed).

4. MINIMUM BER LINEAR TRANSCEIVER WITH FIXED
RATE AND EQUAL CONSTELLATIONS

4.1. Linear Transceiver Design

The precoding process is here slightly different from classical linear
precoding, where the number of data symbols to be transmitted per
channel use K is fixed. In the proposed scheme, K and the MK -
dimensional constellations are adapted to the instantaneous channel
conditions by allowing K to vary between 1 and n = min{nT , nR}
keeping the total transmission rate R = K log2 MK fixed. Usually,
only a subset K of all n possible values of K is supported, since the
number of bits per symbol R/K has to be an integer [12].

The linear precoder BK and K are designed to minimize the
BER averaged over the data symbols to be transmitted for all sup-
ported values of K:

{K,BK} = arg min
K, BK

BERK(snr) (22)

where BERK(snr) is defined in (5), K ∈ K, and BK has to satisfy
the power-constraint in (3). The optimum linear precoder BK for a
given K has been presented and analyzed in Section 3. Then, the
optimum K should be selected as

K = arg min
K∈K

αK

log2 MK
Q
“p

βKρK

”
(23)

or, neglecting the contribution of αK/ log2 MK (since it is not in
the argument of theQ-function), as

K = arg max
K∈K

βKρK (24)

where ρK is given in (12).

4.2. Analytical Performance

The average BER performance of the minBERe design is even more
dificult to derive than the minBERfe scheme analyzed in Theorem 1.
Hence, we have only characterized the diversity gain as presented in
the following theorem.
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Fig. 2. Simulated average BER of the minBERe linear transceiver
(solid), the minBERfe linear transceiver (dashed), and the multi-
mode precoder (dash-doted).

Theorem 2 The diversity gain attained by the minimum BER linear
transceiver with fixed rate and equal constellations in an uncorre-
lated Rayleigh or Ricean flat-fading MIMO channel is bounded by

nT nR ≥ Gd ≥ (nT −Kmin + 1)(nR −Kmin + 1). (25)

where Kmin denotes the minimum value of K in K.

Proof: The average BER of the scheme under analysis, denoted by
BER(snr), can be upper-bounded using Jensen’s inequality as

BER(snr) = E

j
min
K∈K

BERK(snr)

ff
(26)

≤ min
K∈K

BERK(snr) ≤ BERKmin(snr). (27)

where BERKmin(snr) denotes the average BER of the minBERfe
design when K = Kmin. Then, using Theorem 1, the diversity gain
of the minimum BER linear transceiver with fixed rate and equal
constellations is lower-bounded by (nT−Kmin+1)(nR−Kmin+1).
The upper bound corresponds with the full diversity offered by the
channel. �

Theorem 2 shows that the minimum BER linear transceiver with
fixed rate and equal constellations effectively exploits the maximum
diversity offered by the MIMO channel whenever K = 1 is con-
tained in K. In Fig. 2 we plot the average BER performance of
the minBERe scheme (solid lines) in a Rayleigh flat-fading chan-
nel. In addition, we have included the minBERfe design (dashed
lines) and a suboptimum scheme (dash-dotted lines) that also adapts
K jointly with the precoder and achieves full diversity. This tech-
nique is called multimode precoding and was proposed in [12] in the
context of limited feedback linear precoding. As expected, the pro-
posed design outperforms the classical minBERfe linear transceiver
and the suboptimum scheme of [12].

5. CONCLUSIONS

This paper has characterized the average BER performance of the
minimum BER linear transceiver with fixed and equal constellations

in a Rayleigh/Ricean flat-fading channel. It turns out that this classi-
cal minimum BER design has a diversity order limited by that of the
worst eigenmode used, which can be far from the full diversity pro-
vided by the channel. This shows that fixing a priori the number of
independent data streams to be transmitted, a very common assump-
tion in the linear transceiver design literature, inherently limits the
average BER performance of the system. Based on this observation,
we have considered the minimum BER linear transceiver with fixed
rate and equal constellations and shown that it achieves the full di-
versity of the channel thanks to optimizing the number of substreams
jointly with the linear precoder.
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