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ABSTRACT

In this paper, we propose a new Rayleigh channel simula-
tor. Modeling the channel by an AR process leads to numeri-
cal problems due to the bandlimitation of the theoretical Power
Density Spectrum (PSD) of a Rayleigh channel. Therefore, we
suggest modeling the channel by a low-pass ltered version of
the so-called stochastic sinusoidal process. It consists of sinu-
soids in quadrature with random magnitudes modeled as AR
processes. To estimate the AR parameters of the amplitudes,
we take advantage of the asymptotic behavior of the rst-kind
zero-order Bessel function. We show that unlike an AR chan-
nel modeling, this simulator has the advantage of exhibiting
the PSD peaks at the maximum Doppler frequency, for any
AR process order.

Index Terms— Rayleigh channels, autoregressive processes,
Bessel functions.

1. INTRODUCTION

In the framework of wireless systems, the transmitted sig-
nal suffers from the effects of the relative velocity of the re-
ceiver and of the propagation environment. Thus, to test the
receiver performance of a communication system, a great deal
of attention has been paid to channel simulators.
The Rayleigh channel process h(n) is usually generated

in accordance with Clarke’s model. In an environment with
no direct line-of-sight between transmitter and receiver, the
marginal distributions Pφ(n) of the phase φ(n) and Pr(n) of
the amplitude r(n) of the channel process are respectively uni-
form and Rayleigh. In that case, the channel is modeled as
a zero-mean Wide-Sense Stationnary (WSS) Gaussian com-
plex process. The propagation path is assumed to be a two-
dimensional isotropic scattering with a vertical monopole an-
tenna at the receiver [1]. Then, the theoretical PSD of the real
and imaginary parts of the fading samples are de ned as fol-
lows:

Stheo
h (f) =

⎧⎨
⎩

1
πfd

√
1

1−( f
fd

)2
, |f | < fd,

0, otherwise,
(1)

where fd is the maximum Doppler frequency.
The corresponding theoretical normalized discrete-time auto-
correlation function is therefore given by:

Rtheo
h [k] = J0 (2πfdn

|k|) ∀ k ∈ Z (2)

where J0(.) denotes the zero-order Bessel function of the rst
kind and fdn

is the normalised maximum Doppler frequency.
Based on these assumptions, various studies have been car-

ried out to simulate channel samples. Among them, three main
families of approaches have been considered:
• the Sum-Of-Sinusoids (SOS) based methods [1]-[4],
• the Inverse Discrete Fourier Transform (IDFT) based al-
gorithms [5] [6],

• the white noise ltering methods [8]-[10].
Thus, Jakes’ fading model [1] is one of the pioneering

deterministic approach to simulate time-correlated waveforms.
However, simulating uncorrelated channels with a method
based on a sum of sinusoids is not an easy task. To remove cor-
relation between channels, Dent et al. [2] propose to weight
the sinusoids by orthogonal random codes. Nevertheless, Pop
et al. [3] have shown that the autocorrelations of the real and
the imaginary parts and the cross-correlations between these
two parts do not match the desired correlation properties even
if the number of sinusoids tends to in nity. Then, Zheng et al.
[4] have proposed an improved SOS simulator whose second
order statistics correspond to the desired ones for any num-
ber of sinusoids. In addition, the marginal distributions of the
phase and the amplitude can be also well approximated when
using a small number of sinusoids. It should be noted that this
simulation model cannot be used to estimate and/or predict a
channel.
As an alternative to this simulator, Smith [5] propose to

design a channel generator that combines a ltering step and
an IDFT. However, the storage requirement makes Smith’s ap-
proach less attractive when the number of channel samples to
be simulated becomes large. Although Young et al. [6] man-
age to reduce the computational cost and the memory storage,
the use of IDFT leads to an off-line simulation, and hence still
results in a high storage requirement.
The third approach consists in ltering white Gaussian

noises. Thus, Wu et al. [8] and Mamfoumbi Ocloo et al. [7]
model the Rayleigh channel by a 1st or 2nd-order AutoRegres-
sive (AR) process. However, the estimation procedure pro-
posed in [8] leads to twin peaks at ± fdn√

2
, instead of ±fdn

.
More generally, this approach may be questionable. Due to
the bandlimitation of the fading process, only an in nite-order
AR process can lead in theory to the U-shaped PSD [9] [10].
In practice, Baddour et al. [9] suggest considering a model or-
der at least higher than 50 and estimating the parameters based
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on the Yule-Walker equations by using Rtheo
h [k] (2). Never-

theless, this still does not guarantee the frequency peaks to be
at the maximum Doppler frequency. Moreover, the channel
autocorrelation matrix used in the Yule-Walker equations may
become ill-conditioned. To overcome this dif culty, in [9], a
small constant is added to the diagonal of the channel autocor-
relation matrix, yielding a lower matrix condition number. So,
this solution consists in simulating a Rayleigh fading channel
disturbed by a white Gaussian noise.
In this paper, we propose to consider a low-pass ltered

version of a sum of two sinusoids in quadrature at the max-
imum Doppler frequency and whose amplitudes are AR pro-
cesses. This combination has the advantage of providing a
process whose PSD is bandlimited and has two peaks at the
maximum Doppler frequency for any AR order. However, as
the autocorrelation function of the AR amplitudes is not avail-
able, we study two ways to estimate the autocorrelation func-
tion and the AR parameters, pointing out their advantages and
drawbacks.
The paper is organized as follows: In Section 2, a statis-

tical analysis of the stochastic sinusoidal modeling for fading
channel simulation is provided. A comparative study with the
AR-model based simulators [9] is carried out in Section 3.

2. THE STOCHASTIC SINUSOIDAL MODEL

2.1. The Stochastic Sinusoidal Model for channel model-
ing

Let us consider the following stochastic sinusoidal process:
z(n) = a(n)cos(2πfdn

n) + b(n)sin(2πfdn
n) (3)

where a(n) and b(n) are independant pth order AR processes:

a(n) = −
p∑

i=1

cia(n− i) + ua(n) (4)

b(n) = −
p∑

i=1

cib(n− i) + ub(n) (5)

where {ci}i=1,...,p are the real AR parameters. ua(n) and
ub(n) are independant zero-mean complex white Gaussian
noise processes whose real and imaginary parts have the same
variance σ2

p.
In addition, to make z(n) WSS, the real and imaginary

parts of a(n) and b(n) are assumed to have the same autocor-
relation function Ra[k]. Therefore, it can be easily shown that
the modulus and the phase of the stochastic sinusoidal process
z(n) are respectively Rayleigh and uniformly distributed.
However, the PSD of z(n) is not bandlimited, unlike

Stheo
h (f). For this reason, we propose to lter the process

z(n) by a low-pass lter with cut-off frequency fdn
.

At that stage, the autoregressive parameters {ci}i=1,...,p

have to be estimated by using the Yule-Walker equations. This
hence requires the estimation of the AR process autocorrela-
tion function Ra[k].

2.2. Estimation of Ra[k]: First method and resulting nu-
merical problems

On the one hand, due to (3), (4) and (5), the relationship
between Ra[k] and the autocorrelation function Rz[k] of the

stochastic sinusoidal process z(n) is given by:

Rz[k] = Ra[k]cos(2πfdn
k). (6)

On the other hand, according to section 2.1, the PSD Sh(f) of
the simulated channel h(n) satis es:

Sh(f) = Sz(f).Π2fdn
(f) (7)

whereΠ2fdn
(f) is the frequency response of an ideal low-pass

lter with cut-off frequency fdn
.

Combining (6) and the inverse Fourier transform ofΠ2fdn
(f)

leads to:

Rh[k] = (Ra[k]cos(2πfdn
k)) ∗ g(k) for any k (8)

where the real even sequence g(k) is the inverse Fourier trans-
form ofΠ2fdn

(f). Nevertheless, for the subsequent estimation
of Ra[k], a truncated version of the impulse response g(k) has
to be considered (i.e. k ∈ [−L, L] with L high enough to
weaken Gibb’s oscillations at discontinuities in the frequency
domain).
Thus, the equation (8) leads to the following relationship:

GCra = rh (9)
where:
• G is a 2L + 1 × 2L + 1 matrix whose element Gi,j of
the ith row and jth column of G is given by:
for i = 1:

G1,j = g(L− j + 1) (10)

for 1 < i < L + 1:

Gi,j =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

g(L− i + 1), for j = 1,

g(L− i + j) + g(L− i− j + 2), for j ∈ [2, i],

g(L− i− j + 2), for j ∈ [i + 1, 2L + 2− i],

0, otherwise,
(11)

for i = L + 1:

Gi,j =

⎧⎪⎨
⎪⎩

g(0), for j = 1,

g(j − 1) + g(1− j), for j ∈ [2, L + 1],

0, otherwise,
(12)

for 2L + 1 ≥ i > L + 1, the element can be deduced
thanks to the following relation:

Gi,j = G2L+2−i,j . (13)

• C is a diagonal matrix whose ith element is:

Ci,i = cos(2πfdn
(i− 1)) (14)

• ra is the autocorrelation vector to be retrieved given by:
ra = [Ra[0] Ra[1] . . . Ra[2L]]

T (15)

• and rh is the channel autocorrelation vector de ned as:
rh =

[
Rtheo

h [−L] . . . Rtheo
h [0] . . . Rtheo

h [L]
]T (16)

AsRtheo
h [k] is available, the autocorrelationRa[k] can be esti-

mated by solving the set (9) of the 2L+1 equations . However,
two numerical problems may appear:
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• Firstly, GC may not be inversible.
Indeed, for fdn

≤ 0.5 such as 2πkfdn
= (2l + 1)π

2
where l ∈ N , cos(2πkfdn

) = 0. Therefore, one has:
det(C) = det(GC) = 0 (17)

• Secondly, for other values of fdn
, GC may be

ill-conditionned. See the proof in appendix.
Therefore, an alternative estimation method has to be found.

2.3. Estimation ofRa[k]: Secondmethod using the asymp-
totic behavior of the Bessel function

In this subsection, our purpose is to express the Bessel
function as in equation (8). For this purpose, we take advan-
tage of its asymptotic behavior.
Indeed, when |k| ≥ 1

2πfdn
, the Bessel function J0(2πfdn

k)

can be approximated [11] by :

J0(2πfdn
k)≈

√
1

π2fdn
|k|cos(2πfdn

|k| − π

4
) (18)

Therefore, when fdn
≥ 1

2π
, the relation (18) can be rewritten

as follows:
J0(2πfdn

k) ≈ f [k] (cos (2πfdn
k) + sin (2πfdn

|k|)) (19)

where:

f [k] =

√
1

2π2fdn
|k| for k �= 0 (20)

It should be noted that relation (19) still holds for k = 0 pro-
viding f [0] = 1.
At that stage, let us consider Rappr(k) de ned as follows:

Rappr(k) = 2f [k]cos (2πfdn
k) for k �= 0 (21)

where Rappr(0) is the solution of:
TF (Rappr(k))f=0 = TF (J0(2πfdn

k))f=0 (22)

with TF(.) the Fourier transform. Combining (1), (20) and
(21) leads to:

+∞∑
k=−∞

2f [k]cos(2πfdn
k)− 2f [0] + Rappr(0) =

1

πfdn

(23)

which can be rewritten as follows:

Rappr(0) =
1

πfdn

− TF (2f [k]cos (2πfdn
k))f=0 + 2f [0]

(24)
Therefore, due to (18) and (19), the difference

D(k) = J0(2πfdn
k)−Rappr(k) is approximated by:

D(k) ≈
{
−f [k]cos

(
2πfdn

k + π
4

)
, k > 0,

1−Rappr(0), k = 0,
(25)

As shown in gure 1, the Fourier Transform of D(k) is close
to zero between −fdn

and fdn
. The Fourier Transform of

Rappr(k) and J0(2πfdn
k) are therefore very close to each

other in this frequency band. Low-pass ltering at the fre-
quency fdn

hence leads to the following approximation of the
Bessel function:

J0(2πfdn
k) ≈ Rappr(k) ∗ g(k) (26)

So, according to the equations (8), (21) and (26), Ra[k]
can be approximated by:

Ra[k] ≈
{√

2
π2fdn |k| for k �= 0

Rappr(0) for k = 0
(27)

0.5 0 0.5
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1

0

1

normalised frequencies

Fig. 1. Fourier transform of D(k) with fdn
=0.16

2.4. Summary of the channel simulation

1. The AR parameters {ci}i=1,...,p are estimated from the
Yule-Walker equations using the estimation (27) of the
autocorrelation function.

2. Two complex AR processes, whose AR coef cients are
{ci}i=1,...,p are simulated, are modulated by a cosine
and a sine and summed in quadrature.

3. The resulting process is ltered by a low-pass lter whose
L′-length impulse response p(n) is de ned as follows:

p(n) = 2fdn

sin(2π(n− L′/2)fdn
)

2π(n− L′/2)fdn

(28)

where L′ is high enough to weaken Gibb’s oscillations
at discontinuities in the frequency domain.

3. PERFORMANCE COMPARISON TO THE AR
BASED SIMULATOR

In this section, we study the relevance of the low-pass l-
tered version of the stochastic sinusoidal process based simu-
lator to generate bandlimited Rayleigh samples. For this pur-
pose, we carry out a comparative study between the proposed
method and the AR-model based simulator. In the following,
we present the results for the spectra of the real parts of the
simulators. Similar results are obtained for their imaginary
parts. The orders of both the AR models in the proposed
method and the AR-model based simulator vary from 10 to
100 while the normalised maximum Doppler frequency varies
between 0.16 to 0.35. 10000 channel samples are generated.
The length L′ of the impulse response de ned in (28) is as-
signed to 700.
The simulations illustrated by Fig.2 con rm that the spec-

tra of the generated channel with the AR-model based ap-
proach does not exhibit peaks close to the maximum Doppler
frequency when the model order is less than 50 [9]. The pro-
posed method always enables the twin peaks of the PSD to
be located at ±fd, for any AR process order. Furthermore,
the stochastic sinusoidal-model based method provides a PSD
closer to the true one than the standard AR-model based method.

4. CONCLUSION
In this paper, we have investigated the relevance of the l-

tered stochastic sinusoidal model for the simulation of
Rayleigh fading channels. As the straightforward way to esti-
mate the AR parameters leads to numerical problems, we have
proposed a new estimation method based on the asymptotic
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Fig. 2. PSD of various simulators.
behavior of the zero-order Bessel function. Thus, the simu-
lated process has the advantage of exhibiting twin peaks at
the Doppler frequency in its PSD, with a reduced number of
AR parameters. The resulting process better ts the Clarke’s
model statistical properties than the AR process.

APPENDIX

In the following , let M = GC for the sake of simplic-
ity. We aim at nding a lower bound for the 2-norm condition
number ofM de ned as follows:

cond(M) = ‖M‖2
∥∥M−1

∥∥
2

(29)

For this purpose, let us nd lower bounds of ‖M‖2 and
∥∥M−1

∥∥
2
.

Step 1: Let x be the (2L + 1)-length column vector with 1 in
the rst row and 0 elsewhere. AsMx = [g(L) . . . g(0) . . . g(L)]T ,
the 2-norm ofM satis es:

‖M‖2 ≥ 2fdn
. (30)

Step 2: Let k /∈ {1, 2L + 1} and x be the (2L + 1)-length
column vector with 1 in the (k + 1)th row and 0 elsewhere.
One has:

Cx =

⎡
⎣ k︷ ︸︸ ︷

0 . . . 0 cos(2πkfdn
)

2L−k︷ ︸︸ ︷
0 . . . 0

⎤
⎦ (31)

So, y = Mx is a (2L + 1)-length vector whose element on the
ith row satis es:

yi = cos(2π(k)fdn
).Gi,k. (32)

where Gi,k is de ned by equations (11)-(13).
As |g(i)| ≤ g(0) ≤ 2fdn

for all i, one has:

‖Mx‖2 ≤ 4fdn

√
L + 1 |cos(2πkfdn

)| . (33)

At that stage, let us introduce:

y′ =
1

4fdn

√
2L + 1 |cos(2πkfdn

)|Mx. (34)

The 2-norm ofM−1y is equal to:∥∥M−1y
∥∥

2
=

1

4fdn

√
2L + 1 |cos(2πkfdn

)| (35)

As ‖y’‖2 ≤ 1, a lower bound of the 2-norm of M−1 can be
given by: ∥∥M−1

∥∥
2
≥ 1

4fdn

√
2L + 1 |cos(2πkfdn

)| (36)

So, using (30) and (36), the condition number of GC satis es:

cond = ‖M‖2
∥∥M−1

∥∥
2
≥ 1

2
√

2L + 1 |cos(2πkfdn
)| (37)

For IEEE oating point precision of 16 decimal digits, a con-
dition number superior to 1016 causes signi cant errors in the
computation of the inverse of M. So, given (37), when L is
equal to a few hundreds, if ∃ k ≤ 2L such as:

|cos(2πkfdn
)| ≤ 10−17 (38)

then the condition number is too large. Thus, for instance,
fdn

= 0.475 makes the cosinus equal to zero for k = 10,
so for 0.475 − 10−17 ≤ fdn

≤ 0.475 + 10−17, M will be
ill-conditioned.
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