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ABSTRACT

Joint estimation of the carrier frequency offset (CFO) and
channel response of each active user in the uplink of an
OFDMA system over time-varying channels is investigated
in this work. To cope with the enormous computational
complexity involved in tracking the time variations of CFOs
and channels, we propose to use the Parallel Schmidt Kalman
Filter (PSKF) to break down the complicated optimiza-
tion problem into multiple parallel but smaller optimiza-
tion problems. This results in an estimation scheme whose
complexity only grows linearly with the number of users.
Simulations indicate that the proposed scheme can achieve
high estimation accuracy.
Index Terms— Schmidt Kalman Filter, uplink, MIMO-
OFDMA, frequency offset, channel.

1. INTRODUCTION

Orthogonal Frequency Division Multiple Access (OFDMA)
has been considered as one of the leading multiple-access
technologies for broadband wireless networks. In uplink(UL)
OFDMA systems, active mobile users communicate with
the base station (BS) by modulating the subcarriers ex-
clusively assigned to them. In addition to its robustness
to multipath fading and high spectral efficiency, OFDMA
is particularly attractive due to its flexibility in allocating
subcarriers to different users based on their different qual-
ity of service (QoS) requirements and channel conditions
in a dynamic fashion [1]. Meanwhile, the recent develop-
ments in the multiple-input multiple-output (MIMO) tech-
niques have led to considerable research interests in MIMO-
OFDMA. Under the assumption that the propagation path
between each pair of transmit and receive antennas under-
goes independent fading, MIMO systems divide the original
high-rate data stream into several parallel data substreams,
each of which is transmitted from a corresponding transmit
antenna. By exploiting this spatial multiplexing, MIMO
OFDMA can achieve even higher spectral efficiency. As
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a result, MIMO-OFDMA has been envisioned as a strong
candidate for 4G mobile cellular systems.

In this paper we consider an uplink MIMO-OFDMA
system. In the uplink, the MIMO-OFDMA system requires
that active users must be synchronized in time and fre-
quency in order to maintain orthogonality among different
subcarriers, and subsequently different users. Furthermore,
accurate channel estimation is indispensable in order to pro-
vide reliable data transmissions when coherent data detec-
tion is employed. Several schemes have been proposed to
perform joint synchronization and channel estimation for
uplink OFDMA systems, e.g. [2, 3, 4]. In particular, [2]
proposes a maximum likelihood (ML) scheme to jointly es-
timate the carrier frequency offsets (CFOs), timing errors
and channel impulse responses of all active users by re-
sorting to the alternating projection technique, whereas a
subspace-based CFO estimation scheme is proposed in [3].
These existing schemes have good performance but assume
the channel is time-invariant. Since high Doppler shifts are
expected in the outdoor environment due to high mobility
of users, these approaches may not be suitable for practi-
cal time-varying environment. In this paper, we propose a
new joint frequency offset and channel estimation scheme
for UL-MIMO-OFDMA systems over time-varying chan-
nels, assuming perfect time synchronization has already
been achieved.

In our previous works, nonlinear filtering techniques
such as the Kalman filtering technique have been success-
fully applied to joint CFO and channel estimation for single-
user MIMO-OFDM systems [5, 6]. Unfortunately, a straight-
forward extension of the methods in [5, 6] to multi-user
MIMO-OFDMA incurs prohibitively expensive computa-
tional complexity. To cope with this problem, we propose to
employ a parallel Schmidt Kalman filter (PSKF) approach
[7, 8] in this paper. The PSKF can substantially reduce
the computational complexity required by the conventional
Kalman filter without sacrificing significant performance
loss. It will be evident in the later sections that the compu-
tational complexity required by PSKF only grows linearly
with the total number of active users, which facilitates the
development of a pipelined filtering processor where each
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filtering subblock performs one process for each user.

2. SIGNAL AND CHANNEL MODELS FOR
UPLINK OFDMA SYSTEMS

We consider an uplink OFDMA system with N subcarri-
ers and K active users. The BS and each active user are
equipped with Nr and Nt antennas, respectively. Each user
is assigned Nk exclusive subcarriers, where

∑K
k=1Nk ≤ N .

We denote the index set of carriers assigned to the k-th

user as Ik�={i1, i2, . . . , iNk} where 1 ≤ il ≤ N for l =
1, 2, · · · , Nk. In this paper, we do not assume any specific
carrier assignment scheme (CAS) in the derivation of the
proposed scheme. As a result, the proposed scheme is ap-
plicable to any generalized CSA. Denote the Nk data sym-
bols belonging to the n-th OFDMA block transmitted by
the k-th user from the p-th antenna as bpk(n). For presenta-
tional convenience, we assume the data symbols are taken
from the same complex-valued finite alphabet. bpk(n) is first

mapped to form an vector d̃p
k(n) of lengthN . The i-th entry

of d̃p
k(n), say d̃

p
k,i(n), is non-zero if and only if i ∈ Ik. Next,

d̃p
k(n) is converted to the corresponding time-domain vector

by an N -point inverse discrete fourier transform (IDFT). To
prevent inter-symbol interference (ISI), a cyclic prefix (CP)
of Ng symbols is appended in front of each IDFT output
block. The resulting vector of length Ng

d = Nd + Ng is
digital-to-analog converted by a pulse-shaping filter, pD(t),
with a finite support on [0, Td) where Td = NTs with Ts
being the data symbol interval. Finally, the analog signal
from the pulse-shaping filter, s̃pk(t), is transmitted over the
channel from the p-th antenna.

The channel between the p-th transmit antenna of the k-
th user and the q-th receive antenna of the BS during the n-
th block, {hp,qk,l (n)}, is modeled as a tapped delay line (TDL)

with delays τp,qk,l , where 0 ≤ l ≤ Lp,q
k −1 with Lp,q

k being the

channel order. Since Lp,q
k is generally unknown, in practice

we replace Lp,q
k by Lf for all users and antenna pairs. We

assume that the CP is sufficient to comprise the maximum
path delay, i.e., maxk,l,p,q(τ

p,q
k,l ) ≤ NgTs. Furthermore, we

assume that {hp,qk,l (n)} is constant over one OFDMA block
but varies from block to block. Under such assumptions, in
the absence of carrier frequency offsets, the received signal
at the BS from the receiver antenna q corresponding to the
n-th symbol is given as

rq(t) =

K∑
k=1

Nt∑
p=1

Lf−1∑
l=0

hp,qk,l (n)s̃
p
k(t− lTs − τp,qk,l ) + v

q(t), (1)

where vq(t) is a circularly symmetric white Gaussian noise.
After the guard interval is removed from rq(t), we serial-

to-parallel convert the resulting signal and obtain the n-th
received OFDMA block signal given as

rq(n) =

K∑
k=1

Nt∑
p=1

Dp
k(n)h

p,q
k (n) + vq(n), (2)

where

vq(n) ∼ N (vq(n);0, 2N0/TsIN ),

hp,qk (n)
�
=
[
hp,qk,0(n), h

p,q
k,1(n), . . . , h

p,q
k,Lf−1(n)

]T
,

Dp
k(n)

�
=

⎡
⎢⎢⎢⎢⎣

dpk,0(n) dpk,N−1(n) . . . dpk,N−Lf+1
(n)

dpk,1(n) dpk,0(n) . . . dpk,N−Lf+2
(n)

...
... . . . . . .

dpk,N−1(n) dpk,N−2(n) . . . dpk,N−Lf
(n)

⎤
⎥⎥⎥⎥⎦ ,

dpk(n) = 1/
√
NWH d̃pk(n). (3)

with W ∈ CN×N being the fast Fourier transform (FFT)
matrix. Note that dpk(n) is the IFFT output corresponding

to input d̃pk(n) and N (x;mx,Σx) denotes a circular Gaus-
sian density with mean vector mx and covariance matrix
Σx.

Unfortunately, due to the Doppler effect and oscilla-
tor mismatch between transmitter and receiver pairs, the
received signal is usually distorted by carrier frequency off-
sets. Let εp,qk be the normalized carrier frequency offset
with respect to the carrier spacing between the p-th trans-
mit antenna of the k-th user and the q-th receive antenna
of the BS. In the presence of CFOs, (2) becomes

rq(n) =

K∑
k=1

Nt∑
p=1

Δ̃(εp,qk (n))Dp
k(n)h

p,q
k (n) + vq(n),

=

K∑
k=1

D̃q
ε,k(n)h

q
k(n) + v

q(n), (4)

where

Δ̃(εp,qk (n))
�
= ej2πε

p,q
k
(n)((n−1)Ng

d
+Ng)Δ(εp,qk (n)),

Δ(εp,qk (n))
�
= diag(1, ej

2πεp,q
k

(n)
N , · · · , ej

2π(N−1)εp,q
k

(n)
N ),

hqk(n)
�
=
[
h1,qk (n)T ,h2,qk (n)T , v,hNt,q

k (n)T
]T
,

D̃q
ε,k(n)

�
=
[
Δ̃(ε1,qk (n))D1k(n), · · · , Δ̃(εNt,q

k (n))DNt
k (n)
]
.

In the literature, a number of approaches have been
proposed to model the time-varying channels and frequency
offsets in mobile environments, e.g. [5, 6, 9]. We adopt a
parametric model that uses the first order autoregressive
(AR) model to model the channel and frequency offset as
follows.

εp,qk (n) = θp,qk,εε
p,q
k (n− 1) + wp,q

k,ε(n),

hp,qk (n) = Θp,q
k,hh

p,q
k (n− 1) +wp,q

k,h(n). (5)

Note that {θp,qk,ε, θ
p,q
k,h} are mainly determined by users’ mo-

bile speeds. In (5), wp,q
k,ε(n) ∼ N (wp,q

k,ε(n); 0, q
p,q
k,ε) andw

p,q
k,h(n)

∼ N (wp,q
k,h(n);0,Q

p,q
k,h), whereΘ

p,q
k,h

�
=diag(θp,qk,h,0, · · · , θp,qk,h,Nf−1)

and Qp,q
k,h

�
=diag(qp,qk,h,0, · · · , qp,qk,h,Nf−1).

3. SUBOPTIMAL SCHMIDT KALMAN FILTER
FOR CHANNEL PARAMETERS ESTIMATION

According to (4), we have the following system and obser-
vation equations as

rq(n) = D̃q
ε,k(n)h

q
k(n) + D̃

q

ε,k̃
(n)hq

k̃
(n) + vq(n),
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hq(n) = Θq
hh

q(n− 1) +wq
h(n),

εq(n) = Θq
εε

q(n− 1) +wq
ε(n), (6)

where we have defined the following quantities.

hq(n)
�
=
[
hq1(n)

T , · · · ,hqK(n)T
]T

∈ CKNtNf ,

εq(n)
�
=
[
εq1(n)

T , · · · , εqK(n)T
]T

∈ RKNt ,

D̃q

k̃
(n)

�
= [D̃l(n), l = 1, · · · ,K, l �= k] ∈ CN×(K−1)NtNf ,

Θq
h = diag(Θq

1,h, · · · ,Θq
K,h),

Θq
k,h

�
= diag(Θ1,qk,h, · · · ,ΘNt,q

k,h ),

Θq
ε = diag(Θq

1,ε, . . . ,Θ
q
K,ε),

Θq
k,ε

�
= diag(θ1,qk,ε, · · · , θNt,q

k,ε ),

wq
h(n) ∼ N (wq

h(n);0,Q
q
h),

wq
ε(n) ∼ N (wq

ε(n);0,Q
q
ε).

Since the conventional Kalman filter requires prohibitively
expensive computational complexity to obtain the Kalman
gain, we proposed to use the suboptimal Schmidt Extended
Kalman filter to break down the optimization problem above
into K parallel and smaller optimization problems. This
approach is promising since its computational complexity
grows only linearly with the number of users.

3.1. Parallel Schmidt Kalman Filter (PSKF)

Following the notations in [7], we propose a parallel bank
of Schmidt Kalman Filters (SKFs) whose size is K. In the
k-th filter, we will divide the state vector into the essential
state vector (ESV) related to the desired user k,

xqk(n)
�
=[εqk(n)

T ,hqk(n)
T ]T , (7)

and the nuisance state vectors (NSVs) related to the other
users,

xq
k̃
(n)

�
=[εql (n)

T ,hql (n)
T , ∀l, l �= k]T , (8)

which is not coupled with ESV. Thus, we can obtain a new
pair of linearized system and observation equations as

r̃q(n) = Jqk(n)x
q
k(n) + J

q

k̃
(n)xq

k̃
(n) + vq(n),

xqk(n) = diag(Θq
k,ε,Θ

q
k,h)x

q
k(n− 1) +

[
wq

k,ε(n− 1)
wq

k,h(n− 1)

]
,

xq
k̃
(n) = diag(Θq

k̃,ε
,Θq

k̃,h
)xq

k̃
(n− 1) +

[
wq

k̃,ε
(n− 1)

wq

k̃,h
(n− 1)

]
,

where

r̃q(n)
�
= δr̃q(n) +

[
Jqk(n) J

q

k̃
(n)
] [ x̂qk(n|n− 1)
x̂q
k̃
(n|n− 1)

]
,

δr̃q(n)
�
= rq(n)−

K∑
k=1

D̃q
ε̂(n|n−1),k(n)ĥ

q
k(n|n− 1),

Jqk(n)
�
=
[
ED̃q

ε̂(n|n−1),k(n)ĥ
q
k(n|n− 1), D̃q

ε̂(n|n−1),k(n)
]
,

Jq
k̃
(n)

�
= [Jql (n), ∀l, l �= k] , a

�
=(n− 1)(N +Ng) +Ng,

E
�
= diag

(
j2πa, · · · , j2π(a+ N − 1

N
)

)
. (9)

Next, we decompose the covariance matrix Pq(n|n− 1)
and the Kalman gain matrix Kq(n) into the following form.

Kq(n) = [Kq
k(n)

H Kq

k̃
(n)H ]H =[

Pq
k,k(n|n− 1)Jk(n)

H +Pq

k,k̃
(n|n− 1)Jk̃(n)

H

Pq

k̃,k
(n|n− 1)Jk(n)

H +Pq

k̃,k̃
(n|n− 1)Jk̃(n)

H

]
A,

Pq(n|n− 1) =

[
Pq

k,k(n|n− 1) Pq

k,k̃
(n|n− 1)

Pq

k̃,k
(n|n− 1) Pq

k̃,k̃
(n|n− 1)

]
, (10)

where

A−1 = Jk(n)P
q
k,k(n+ 1|n)Jk(n)H + 2N0/TsI+

2Re
(
Jk(n)P

q

k,k̃
(n+ 1|n)Jk̃(n)H

)
Jk̃(n)P

q

k̃,k̃
(n+ 1|n)Jk̃(n)H

(11)

The SKF forces Kq

k̃
(n) to be zero, such that K̃q(n) =

[Kq

k,skf
(n)T ,0T ]T . Note that Kq

k,skf
(n) is optimal under

the constaint that the NSVs are not estimated. But it is
inferior to the original KF which uses Kq(n). According to
the SKF, the estimated error covariance matrix Pq(n|n) is
computed from the following equation:

Pq(n|n) =
[
Pq

k,k(n|n) Pq

k,k̃
(n|n)

Pq

k̃,k
(n|n) Pq

k̃,k̃
(n|n)

]
,

Pq
k,k(n|n) =
BPq

k,k(n|n− 1)BH − 2Re{BPq

k,k̃
(n|n)CH}+

CPq

k̃,k̃
(n|n− 1)CH + 2N0K

q

k,skf
(n)Kq

k,skf
(n)H/Ts,

Pq

k,k̃
(n|n) = BPq

k,k̃
(n|n− 1)− CPq

k̃,k̃
(n|n− 1),

Pq

k̃,k
(n|n) = Pq

k,k̃
(n|n)H ,Pq

k̃,k̃
(n|n) = Pq

k̃,k̃
(n|n− 1),

B�
=(I−Kq

k,skf
(n)Jk(n)), C�=Kq

k,skf
(n)Jk̃(n). (12)

Note that the estimated error covariance matrix for NSVs
is not updated. The estimation for the ESV is performed
as follows.

Kq

k,skf
(n) =(
Pq

k,k(n|n− 1)Jk(n)
H +Pq

k,k̃
(n|n− 1)Jk̃(n)

H
)
A,

x̂qk(n|n) = x̂qk(n|n− 1) +Kq

k,skf
(n)δrq(n),

δrq(n) = (rq(n)− ˆ̃D
q

ε̂(n|n−1),k(n)ĥ
q
k(n|n− 1)). (13)

From these derivations, the proposed PSKF has K sepa-
rated SKFs. Each SKF separately computes and updates
Pq

k,k(n|n) and {ε̂qk(n|n), ĥqk(n|n)} as

Pq
k,k(n+ 1|n) = Θq

k,hP
q
k,k(n|n)(Θq

k,h)
T +Qq

k,h,

xqk(n+ 1|n) = diag(Θq
k,ε,Θ

q
k,h)x

q
k(n|n). (14)

3.2. Complexity Analysis of the PSKF

To compute the Kalman gain defined (10), we require O(N3)
multiplications and additions forA−1,K×O(N(K−1)(Nt(Nf+
1))2N) multiplications and additions for all Kq

k(n), and

III  207



K ×O(N(K − 1)2(Nt(Nf +1))2N) multiplications and ad-
ditions for all Kq

k̃
(n). From these figures, we can easily find

that, as the number of users increases, the proposed PSKF
scheme has more advantages over the conventional Kalman
filtering technique. Furthermore, it is worthwhile to note
that the interference is not required to be modeled as simple
AWGN in the proposed scheme.

4. SIMULATION RESULTS

In this section, we verify the proposed scheme through sim-
ulation. We employ the following system parameters:

• Nt = Nr = 4, K = 5, N = 64, and M = 10.

• Lf = 2, ||hp,qk (n)||2 = {0.7740, 0.6332}, ∀p, q, k.
• AR coefficients: θp,qk,ε = θ

p,q
k,h = 0.999, ∀k, p, q.

Figures 1-2 show the performance of the proposed joint
channel and frequency offset scheme for a QPSK MIMO-
OFDMA system over a moderate fading channel whose nor-
malized Doppler frequency is fdTd = 1e−2. A packet con-
sists of ten OFDM symbols. In the simulations, we assume
{Dp

k(n)} are perfectly known to the BS and zero initial con-

ditions for ε̂p,qk (0) and ĥp,qk (0).
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Fig. 1. Performances of the joint estimation with equal
user powers.

If the received signals from all users have an equal power,
Figure 1 reveals that better performance can be achieved
with more symbols (indicated by n) and higher SNR. Fur-
thermore, Figure 2 shows the impact of the near-far effect
on the performance of the proposed scheme.

In Figure 2, the received signal from the first user, k = 1,
is 10 log(K) [dB] stronger than that of other users. While
the stronger user reaps better performance in terms of mean
squared errors (MSE) of channel estimation, almost iden-
tical convergence behavior and performance in frequency
offset estimation have been observed in Figure 2, irrespec-
tive of users’ signal powers.
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