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ABSTRACT

This paper presents an ef cient method for computing the optimal
tap coef cients of the MIMO equalizers and cancellers from the
channel impulse responses (CIR). The proposed method provides
an insight of the minimum mean-square error (MMSE) solution in a
general MIMO system and shows that the MSE optimization prob-
lem in aM -inputN -output system can be decomposed intoN inde-
pendent minimization problems each with smaller size. Solving each
separate problem in MMSE sense is computationally ef cient, thus
leading to substantial savings in overall computational complexity.
Compared with a prior method, this new method is exact and much
faster.

Index Terms— MIMO, CIR, MMSE, independent, computa-
tion complexity

1. INTRODUCTION

In many multiple wireline communication systems, the received sig-
nal not only suffers from signal attenuation and inter symbol infer-
ence (ISI), but also suffers from echo, near-end cross talk (NEXT),
far-end cross talk (FEXT), and other noises such as alien NEXT
(ANEXT). A typical example is 10 Gigabit Ethernet over copper
(10Gbase-T) system, which performs full duplex baseband trans-
mission over four pairs of unshielded twisted pair (UTP) copper
cables, where ISI is a signi cant impairment against reliable high
speed digital transmission, and each received signal is corrupted by
echo from its own transmitter and NEXT interferences from three
adjacent transmitters. To meet the desired throughput (10Gbps) and
target BER (10−12) requirements, a MIMO equalization and cancel-
lation scheme is applied to 10Gbase-T system [1].

To set the optimal tap coef cients of the equalizers and can-
cellers in such a MIMO system, one straightforward approach is to
recursively compute the tap coef cients using adaptive algorithms
such as least mean square (LMS). However, the recursive LMS adap-
tation of these equalizers and cancellers may take millions of itera-
tions to converge to the optimal solution on a typical Category-6
UTP channel. Much faster convergence can be achieved using RLS
algorithm, but the higher computational cost is prohibitive in real
applications. Another indirect approach is to compute the tap coef-
cients, in MMSE sense, based on the channel estimates [2]. In this

approach, the knowledge of the channel impulse response, as well as
the noise characteristics are required. In addition, a computationally
ef cient approach is also needed to compute the optimal settings of
the MIMO equalizers and cancellers.

This research was supported in part by the National Science Foundation
by the grant number CCF-0429979.

Previous studies on ef ciently computing the tap coef cients
of the equalizers are mostly based on the traditional nite-length
MMSE-DFE structure. In [2], Cholesky factorization is applied to
carry out the involved matrix inversion ef ciently. By exploiting the
structured matrices, a generalized Schur algorithm for fast Cholesky
matrices decomposition was provided in [3] to reduce the computa-
tional complexity in both feedback and feedforward lters compu-
tation. Recently, another ef cient approach is proposed to achieve
faster computation by identifying the relationship between the feed-
forward equalizer computation and fast recursive least squares (RLS)
adaptive algorithms, and treating the feedback equalizers computa-
tion as a convolution operation [5].

Although these methods can be easily extended to the general
MMSE-DFE tap computation in MIMO channels [4, 6], they may
not always be computationally ef cient for computing the optimal
coef cients of the MIMO equalizers and cancellers in the cases where
the cancellers have a larger number of taps than the feed-forward
equalizers. By using Al-Dhahir’s method [4], the inversion of an
embedded correlation matrix will be computationally intensive since
the size of the matrix is related to the maximum number of taps
in Echo cancellers and NEXT cancellers, as shown in the follow-
ing section. In addition, the number of taps in Echo cancellers and
NEXT cancellers need not be same in real applications. Thus, ap-
plying the ef cient method in [6] is also not straightforward.

In this paper, we present a new computationally ef cient ap-
proach for computing the optimum settings of the MIMO equalizers
and cancellers for 10Gbase-T, assuming that the channel impulse re-
sponse estimate and the noise characteristics are known. This new
method is exact and applicable to cases where Echo & NEXT can-
cellers have different lengths. Compared with Al-Dhahir’s method,
it has lower computational complexity.

In Section 2, the system model is brie y reviewed and the MMSE
solution based on Al-Dhahir’s method is derived. In Section 3, the
proposed approach for fast computation of the tap coef cients is pre-
sented in detail, and the computational savings due to the proposed
method are also addressed.

2. SYSTEM MODEL AND PROBLEM FORMULATION

In 10Gbase-T, a typical Category-6 UTP channel can be modeled as
two 4 × 4 MIMO channels as shown in Fig. 1, where hi,j denotes
the MIMO channel impulse response from the ith input to the jth
output with length v+1 and gm,n denotes the Echo & NEXT channel
impulse response from the mth input to the nth output with length
l + 1. Let xi denote the transmitted symbol sequence from the ith
far end transmitter and zm denote the transmitted symbol sequence
from themth near end transmitter, and nj denote background noise
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at the jth channel output. Then the jth channel received symbol
sequence is given by

yj =

4∑
i=1

hi,j ⊗ xi +

4∑
m=1

gm,j ⊗ zm + nj (1)

for j = 1, . . . , 4. where ⊗ denotes convolution.
By grouping symbols from 4 received channels at time k into a

column vector y(k) � [y1(k) y2(k) y3(k) y4(k)]
T , (1) can be

expressed as follows:

y(k) =
v∑

τ=0

Hτx(k − τ) +
l∑

p=0

Gpz(k − p) + n(k) (2)

where Hτ and Gp represent 4 × 4 τ th far end channel coef cient
matrix and pth near end channel coef cient matrix, respectively. The
signals x(k − τ) and z(k − τ) correspond to far end transmitted
column vector and near end transmitted column vector at time index
k − τ . By stacking Nf successive channel output vector samples,
(2) can be expressed in matrix form as follows:

y(k +Nf − 1 : k) = H · x(k +Nf − 1 : k − v)

+ G · z(k +Nf − 1 : k − l)

+ n(k +Nf − 1 : k).

(3)

where y(k+Nf−1 : k) is a column vector with dimension 4Nf×1,
and matrix H and matrix G are both block Toeplitz matrices with
dimension Nf × (Nf + v) and Nf × (Nf + l) respectively.

H =

⎡
⎢⎢⎢⎣
H0 H1 . . . Hv 0 . . . 0
0 H0 H1 . . . Hv . . . 0
...
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Fig. 1. Block Diagram of the MIMO Channel

Fig. 2 shows the block diagram of the MIMO equalizer and
canceller. In this gure, let Nf , Nb, Np be the lengths of the feed
forward lter matrix W, feedback lter matrix B, and Echo & NEXT
cancellation lter matrix P, respectively. If we further assume Echo
& NEXT cancellers have different numbers of taps withNe and Nx

respectively, then Np � max(Ne, Nx). The objective is to choose
W, B, and P to minimize mean square error (MSE) of the four chan-
nels.

From Fig. 2, the error vector at time k of the four channels can
be represented by

e(k) = B̃
H

x(k +Nf − 1 : k − v) +

P̃
H

z(k +Nf − 1 : k − l)−WHy(k +Nf − 1 : k) (4)
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Fig. 2. Joint MIMO Equalizers and Cancellers

where,

WH =
[
WH

0 WH
1 . . . WH

Nf−1

]
,

B̃
H

=
[

01×Δb
BH
0 BH

1 . . . BH
Nb

01×s1

]
=

[
01×Δb

�B
H

01×s1

]
,

P̃
H

=
[

01×Δp PH
1 . . . PH

Np
01×s2

]
=

[
01×Δp

�P
H

01×s2

]
,

whereWi, Bi and Pi are 4× 4 blocks, and 0 is a 4× 4 zero matrix.
We also de ne s1 = Nf + v − Nb −Δb − 1 and s2 = Nf + l −
Np −Δp with the decision delays Δb and Δp, respectively.

Now the mean square error minimization problem can be formu-
lated as,

min. E[‖e(k)‖2] = trace(Ree)

s.t.
[
�B

H �P
H
]
Φ = I (5)

whereΦH =
[

I 01×(Nb+Np)

]
, and I is a 4×4 indentity matrix.

Solving this optimization problem, we get
[
�Bopt

�Popt

]
= R−1Δ Φ(Φ

H
R
−1
Δ Φ)

−1 (6)

WH
opt =

[
B̃

H

opt P̃
H

opt

] [
Rxy

Rzy

]
R
−1
yy (7)

Ree,min = E[e(k)eH(k)]

=
[
�B

H

opt
�P

H

opt

]
RΔ

[
�Bopt

�Popt

]
= (ΦHR−1Δ Φ)

−1
(8)

MSEmin =
1

4
trace(Ree,min) (9)

where RΔ = QHRQ, and Q is a constant matrix.

R =

[
Rxx −RxyR

−1
yy Ryx −RxyR

−1
yy Ryx

−RzyR
−1
yy Ryz Rzz −RzyR

−1
yy Ryz

]
.

Since the matrixRΔ in (6) has dimensions 4(Nb+Np+1)×4(Nb+
Np + 1), Cholesky factorization would generally need O[64(Nb +
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Np + 1)3] operations. By using fast algorithms in [4], these compu-
tations can be performed ef ciently inO[16(Nb +Np +1)2] opera-
tions. However, we note that the computational complexity required
for fast Cholesky factorization depends on the total number of taps in
feedback equalizers and Echo & NEXT cancellers. Hence, for can-
cellers with a large number of taps, the computation of the optimal
tap coef cients will be expensive.

3. FAST COMPUTATION METHOD

In this section, a computationally ef cient approach for comput-
ing the optimum settings of the MIMO equalizers and cancellers
is presented. The basic idea is to reduce the dimension of matrix
required for Cholesky factorization. This can be achieved by de-
composing the original optimization problem in (5) into four sepa-
rate/independent optimization problems, each with smaller size. Solv-
ing each optimization problem is computationally ef cient. Thus,
the overall computational complexity will be signi cantly reduced.

The minimization problem in (5) can be written as:

min. E[‖e(k)‖2] = trace(Ree)

= E[e1(k)
2] + E[e2(k)

2] + E[e3(k)
2] + E[e4(k)

2]

s.t.
[
�B

H �P
H
]
Φ = I (10)

where ei(k), (i = 1, 2, 3, 4) is the error signal for each correspond-
ing channel. To show that this problem is equivalent to minimizing
each of the mean square error for each channel, we rewrite (4) as:

e(k) =
[

B̃
H

P̃
H
]
·

[
x(k +Nf − 1 : k − v)
z(k +Nf − 1 : k − l)

]

− WHy(k +Nf − 1 : k)

= AHs−WHy(k +Nf − 1 : k) (11)

where AH =
[

B̃
H

P̃
H
]
, and s =

[
x(k +Nf − 1 : k − v)
z(k +Nf − 1 : k − l)

]
.

Each element of e(k) is given by

e1(k) = A(1)Hs−W(1)Hy

e2(k) = A(2)Hs−W(2)Hy

e3(k) = A(3)Hs−W(3)Hy

e4(k) = A(4)Hs−W(4)Hy

where A(i)H and W(i)H represent the ith row of AH and WH , re-
spectively. Then, we have

E[eie
H
i ] = A(i)H(Rss −RsyR

−1
yy Rys)A

(i) +

(W(i)H − A(i)H
RsyR

−1
yy )Ryy(W

(i)H − A(i)H
RsyR

−1
yy )

H
.

The goal is to minimize the total MSE, E[‖e(k)‖2], with respect to
A(i) and W(i), i = 1, 2, 3, 4. Since there is no constraint on W,
we can rst minimize the total MSE with respect to W(1), assuming
A(1) is xed. It is easy to see that E[eieHi ](i = 2, 3, 4) is indepen-
dent of W(1), and minimizing the total MSE with respect to W(1)

is equivalent to minimizing the E[e1eH1 ] separately. Thus, we get
the optimal coef cients of the feed-forward lters corresponding to
channel 1 as follows:

W(1)H
opt = A(1)H

RsyR
−1
yy (12)

then the minimum E[e1eH1 ] (with respect to W(1)) turns out to be

E[e1e
H
1 ] = A(1)H(Rss −RsyR

−1
yy Rys)A

(1) (13)

similarly, we have

E[e2e
H
2 ] = A(2)H(Rss −RsyR

−1
yy Rys)A

(2) (14)

E[e3e
H
3 ] = A(3)H(Rss −RsyR

−1
yy Rys)A

(3) (15)

E[e4e
H
4 ] = A(4)H(Rss −RsyR

−1
yy Rys)A

(4) (16)

Now we minimize the total MSE with respect to A(i). As before,
minimizing the total MSE with respect to A(i) is equivalent to min-
imizing each E[eieHi ] only. Therefore, we can solve the original
problem by minimizing each of the E[eieHi ].

For minimizing each of the E[eieHi ], the problem size is greatly
reduced. As an example, we solve the optimization problem corre-
sponding to E[e1eH1 ] minimization. We rst write e1(k) as

e1(k) = x1(n−Δb1)−
(
W1Hy1− B1Hx1− P1Hz1

)

= x1(n−Δb1)−
(
W1Hy1− A1Hs1

)
(17)

where Δb1 is the decision delay for channel 1, and W1, B1 and P1
are all column vectors,

W1H
�

[
W (1,1)H W (2,1)H W (3,1)H W (4,1)H

]
W

(i,j)
�

[
w
(i,j)
0 w

(i,j)
1 . . . w

(i,j)
Nf−1

]H
B1H

�
[
B(1,1)H B(2,1)H B(3,1)H B(4,1)H

]
B

(i,j)
�

[
b
(i,j)
1 b

(i,j)
2 . . . b

(i,j)
Nb

]H
P1H

�
[
P (1,1)H P (2,1)H P (3,1)H P (4,1)H

]
P
(i,i)

�

[
p
(i,i)
1 p

(i,i)
2 . . . p

(i,i)
Ne

]H

P
(i,j)

�

[
p
(i,j)
1 p

(i,j)
2 . . . p

(i,j)
Nx

]H
.

y1, x1 and z1 are also column vectors,

y1H
�

[
y(1,1)H y(2,1)H y(3,1)H y(4,1)H

]
x1H

�
[
x(1,1)H x(2,1)H x(3,1)H x(4,1)H

]
z1H

�
[
z(1,1)H z(2,1)H z(3,1)H z(4,1)H

]

x
(i,j)

�

⎡
⎢⎢⎢⎢⎣

x
(i,j)
n−Δb1−1

x
(i,j)
n−Δb1−2

...
x
(i,j)
n−Δb1−Nb

⎤
⎥⎥⎥⎥⎦ , y

(i,j)
�

⎡
⎢⎢⎢⎢⎣

y
(i,j)
n

y
(i,j)
n−1

...
y
(i,j)
n−Nf+1

⎤
⎥⎥⎥⎥⎦

z
(i,i)

�

⎡
⎢⎢⎢⎢⎣

z
(i,i)
n−Δe1−1

z
(i,i)
n−Δe1−2

...
z
(i,i)
n−Δe1−Ne

⎤
⎥⎥⎥⎥⎦ , z

(i,j)
�

⎡
⎢⎢⎢⎣
z
(i,j)
n−Δx1−1

z
(i,j)
n−Δx1−2

. . .

z
(i,j)
n−Δx1−Nx

⎤
⎥⎥⎥⎦

To minimize E[e1eH1 ] from (17), the well-known solution is
given by [7],

⎡
⎣ W1

B1
P1

⎤
⎦ = Φ−1θ (18)
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where

Φ = E

⎛
⎝
⎡
⎣ y1

x1
z1

⎤
⎦ [ y1 x1 z1

]H
⎞
⎠

θ = E

⎛
⎝
⎡
⎣ y1

x1
z1

⎤
⎦ x1(k −Δb1)

⎞
⎠ . (19)

Finally, the optimum taps of the equalizers and cancellers corre-
sponding to the channel 1 can be computed as,

⎡
⎣ W1

B1
P1

⎤
⎦ =

⎡
⎣ Φ

−1
1 θ1

−RHy1x1W1
−RHy1z1W1

⎤
⎦ (20)

where

θ1 = E [y1x1(k −Δb1)] , (21)

and

Φ1 = Ry1y1 − Ry1z1R
H
y1z1 − Ry1x1R

H
y1x1. (22)

Here, we assume the input vectors x and z are i.i.d with unit
power in our derivation. We see thatΦ1 has dimension 4Nf ×4Nf ,
which only depends on the length of the feed-forward lters. Thus,
the size of the matrix required for Cholesky factorization is reduced
compared with 4(Nb +Np + 1)× 4(Nb +Np + 1) in (6). We also
note that no multiplications are needed to compute (21) and form the
the block Toeplitz matrices Ry1z1 and Ry1x1 in (22). Therefore,
computing (20) requires a total number of

2(4Nf )
2 + 4Nf (Ne + 3Nx) + 16Nf (Nb) + 16N2

f (v − 1)

+4N2
f (Ne − 1) + 12N2

f (Nx − 1) + 16N2
f (Nb − 1)

multiplications. Assuming that the complexity is dominated by the
multiplication operations, Fig. 3 shows the complexity comparison
between Al-Dhahir’s and the proposed method. Fig. 4 shows the
computational reduction due to the proposed approach compared
with Al-Dhahir’s method. It can be observed that the proposed method
can achieve substantial computational savings of 63.8% (where,Nf

is the length of feed-forward MIMO equalizer; Nb = 32 is the
length of the feedback matrix lter; Ne = 500 is the length of Echo
cancellers; Nx = 400 is the length of NEXT cancellers; and di-
rect MIMO channel & crosstalk channel have lengths v = 1000 &
l = 1000, respectively).

4. CONCLUSION

We have presented a new method to compute the optimal coef -
cients of the MIMO equalizers and cancellers in 10Gbase-T channel.
The proposed approach is exact and applicable to the general MIMO
DFE computation as well as such cases where Echo & NEXT can-
cellers have a large number of taps with different lengths, which usu-
ally make Al-Dhahir’s method inef cient. It is shown that, by using
the proposed method, we are able to achieve about 63.8% compu-
tation cost reduction in terms of multiplication operations compared
with the existing methods. This computation speedup also makes the
analysis easier when Alien crosstalk such as ANEXT is considered
in the channel model.
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