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ABSTRACT

In this paper we investigate the problem of channel tracking
and detection for MIMO-OFDM systems over fast varying
channels obeying a Gauss-Markov model. We consider time
domain tracking of the channel matrix taps with Kalman l-
ter, whereas symbols detection is carried out by a zero-forcing
(ZF) soft detector. A key assumption of the theory of Kalman
lter is that the state-space model is perfectly known, while
communication systems make use of the detected symbols as
an input to the Kalman lter in order to form a suitable state-
space model. This gives rise to error propagation due to mis-
detected symbols (model mismatch) and is usually solved by
using frequently inserted pilot symbols, resulting in a reduced
spectral ef ciency. To overcome this problem, we suggest a
novel approach to mitigate the error propagation due to mis-
detections without using frequent pilot symbols. In particular,
we consider the reliability of the detections based on the soft
detector and use only those outputs that have robust reliabil-
ity to track the channel matrix taps, minimizing the effect of
Kalman lter mismodeling. This method can signi cantly re-
duce the error propagation effect, leading to an improved bit
error probability.

Index Terms— MIMO systems, Kalman ltering

1. INTRODUCTION

Modern wireless communication systems require high data
rate transmission over wireless channels. Information theory
indicates that a multi-input/multi-output (MIMO) system can
provide enormous capacity improvement, relative to a single-
input/single-output system [1]. OFDM has gained much at-
tention over the last few years due to its ability to transform
the frequency selective channel into many low-rate parallel
streams, thereby increasing the symbol duration, canceling
the inter block interference (IBI) and leading to simple equal-
ization. Recent studies have shown that for frequency-selective
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channels, combining OFDM with MIMO system can pro-
vide a high rate and reliable transmission. However, this re-
quires an accurate estimate of the channel state information at
the receiver. The conventional decision-directed time-domain
channel estimation using Kalman lter is suitable for relative
small values of Doppler offset, where the channel uctuates
very slowly. However, at high velocities, decision-directed
method would be prone to many errors, due to the rapid nature
of the channel variations. These errors would propagate into
the Kalman lter and may diverge it. In this paper we sug-
gest a new receiver to overcome this inherent problem. Our
approach is based on the fact that the number of observations
given at each OFDM symbol is much larger than the number
of channel taps. Therefore, it is possible to prune observa-
tions whose detection is unreliable, reducing the risk of errors
propagating into the Kalman lter. We show that the proposed
scheme can signi cantly reduce the error propagation effect,
leading to a reduced BER that approaches the performance of
a system with no error propagation.

2. MIMO-OFDM SYSTEMMODEL

We consider a MIMO-OFDM system shown in Figure 1. In
order to keep the presentation simple we consider a 2-transmit/
2-receive antenna con guration andN OFDM subcarriers. The
generalization toNt-transmit/Nr-receive antennas is straight-
forward. For the nth block, 2N baseband symbols are mul-
tiplexed into two parallel streams, si(n), i = 1, 2, for two
transmit antennas, each stream containing N symbols, to form
an OFDM block. Each OFDM block of complex-valued sym-
bols from anM-ary modulation alphabet setA =

{
a1, .., a|A|

}
is transformed using an inverse fast Fourier transform (IFFT)
and transmitted by an antenna. We assume that the use of
a cyclic pre x (CP) both preserves the orthogonality of the
tones and eliminates inter block interference (IBI) between
consecutive OFDM blocks. The length of the CP is assumed
to be larger than that of the channel’s impulse response. The
received 2N × 1 vector, after cyclic pre x removal and FFT
(fast Fourier transform) operation can be expressed as
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Fig. 1. MIMO-OFDM transceiver
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where Yj(n), j = 1, 2 is the N × 1 observation vector at
the jth antenna, Dj(n), j = 1, 2 is an N × N diagonal ma-
trix, with its main diagonal containing N symbols of the jth
transmit antenna, 0 refers to a zero matrix with the appro-
priate size, hij(n), i, j = 1, 2 is the channel response vector
between the jth transmit and ith receive antenna, and zj(n),
j = 1, 2 is an N × 1 vector of independent identically dis-
tributed (i.i.d.) complex zero-mean Gaussian noise with co-
variance matrix R = Iσ2 and assumed to be uncorrelated
with the channel matrix.WL, is the N × L partial DFT ma-
trix de ned as WL ≡

{
e−j2πnk/N

}
n=0,...,N−1;k=0,...,L−1

.
In a compact matrix form the system model can be written as

Yn = DnWhn + Zn (2)

We consider a fading multipath channel according to Jake’s
model [2], consisting of L impulses and can be written as
h (t, τ) =

∑L−1
l=0 γl (t) δ (τ − τl) where τl is the delay of

the lth path, γl (t) is the corresponding complex amplitude.
γl (t)’s are wide-sense stationary complex Gaussian processes,
independent of each other. This channel can be approximated
by an auto regressive (AR) process, and we chose to work
with the AR model of the rst order, which is a reasonable
approximation of the Jake’s model parameters [3],

hn = Ahn−1 + vn (3)

where vn is the innovation process with a covariance matrix
Q. The unknown parametersA andQ are 4L× 4L matrices
and can be calculated using Yule-Walker equations [4].

3. RECEIVER STRUCTURE

In this section we present the decision-directed channel track-
ing and detection for the MIMO-OFDM system. Since the
complexity of a maximum-likelihood (ML) detector is expo-
nential, we instead use a zero-forcing (ZF) receiver that has
a low complexity. We suggest a receiver consisting of two
submodules: Soft detector and Kalman lter channel tracker
using detections pruning. The receiver is shown in Figure 1.
It consists of the following components:

3.1. Decision-Directed Zero-Forcing Soft Detector

The received signal Yn and the estimated channels impulse
response of the previous block ĥn−1 are fed to the soft detec-
tor which yields the log likelihood ratio (LLR) of each of the
bits of the nth block. For clarity purposes, we will drop the
time index n. Since the noise is independent between differ-
ent subcarriers, the soft detector is implemented in the same
manner for all N subcarriers. The MIMO-OFDM equation for
the kth subcarrier can be written as[

y1

y2

]
︸ ︷︷ ︸

Yk

=

[
H11 H12

H21 H22

]
︸ ︷︷ ︸

Hk

[
d1

d2

]
︸ ︷︷ ︸

dk

+

[
w1

w2

]
︸ ︷︷ ︸

wk

, (4)

where yj is the observation of the jth receive antenna, j =
1, 2, Hij is the channel frequency response between the jth
transmit antenna and the ith receive antenna of the previous
OFDM symbol, j = 1, 2, given by Hij = W k

L

(
ĥij

)
n−1

,

where W k
L is the kth row of the partial DFT matrix WL. di,

i = 1, 2 are the data symbols of the ith transmit antenna and
wj , j = 1, 2 is the additive complex circular Gaussian noise.
The ZF receiver lter is given by

Gk =
(
HH

k Hk

)−1
HH

k (5)

and results in[
r1
r2

]
︸ ︷︷ ︸

Rk

= GkYk =

[
d1

d2

]
︸ ︷︷ ︸

dk

+
(
HH

k Hk

)−1
HH

k wk︸ ︷︷ ︸
wk

, (6)

where the transformed noise vectorwk has covariance matrix
Rwk

= E
(
wkw

H
k

)
= σ2

(
HH

k Hk

)−1.
The LLRs of the soft detector are de ned as

Λ
(i,j)
k = ln

f(bi,j = 1|Rk,wk)

f(bi,j = 0|Rk,wk)
= ln

∑
b∈B1

i
f(b|Rk,wk)∑

b∈B0

i
f(b|Rk,wk)

(7)

where Λ
(i,j)
k is the LLR value of the ith bit, i = 1, ..., log2 |A|

of the signal from the jth layer (antenna), j = 1, 2, bi,j is the
ith bit of the jth layer, b ∈ Bv

i denotes the set of all sym-
bols whose ith bit is equal to v, where v = 0, 1. In order to
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compute the LLRs of the detector output, we use the approx-
imation proposed in [5]

Λ
(i,j)
k ≈

1

σ2
wj

[
min
b∈B0

i

|rj − b|
2
− min

b∈B1

i

|rj − b|
2

]
(8)

where σ2
wj

≡ (Rwk
)j,j denotes the noise variance of the

transformed noise. The estimated symbols d̂k =
[
d̂1 d̂2

]T
are produced by taking the hard decisions of the LLRs and
mapping to the appropriate symbol point.

3.2. Channel Tracking

Consider the AR model for the channel dynamics (3), and
the MIMO-OFDM equation (2). A state-space model of the
system can be written down as

hn = Ahn−1 + vn (9)
Yn = DnWhn + Zn (10)

In order to track the channel we need to regenerate the sym-
bols matrix Dn, that was sent over the channel. However,
Dn is not given at the receiver and therefor, the Kalman lter
can not be used directly. Instead, as a suboptimal solution, we
can use D̂n, the estimated matrix ofDn, for channel tracking.
The estimated matrix D̂n is obtained by taking the hard deci-
sions of the soft detector. Now, the Kalman lter can be ap-
plied to track the channel impulse response hn. The Kalman
lter equations are [6]

ĥ−n = Aĥn−1 (11)

P−n = APn−1A
H +Q (12)

Kn = P−n

(
D̂nWL

)H (
D̂nWLP

−
nW

H
L D̂

H
n +R

)−1

(13)

ĥn = ĥ−n +Kn

(
Yn − D̂nWLĥ

−
n

)
(14)

Pn = P−n −KnD̂nWLP
−
n (15)

3.3. Channel Tracking using Detections Pruning

As long as Dn = D̂n (meaning that there are no misdetec-
tions), the Kalman lter operates in its nominal values, that
is to say, the state-space model is accurate and no mismod-
eling occurs. It achieves the minimum variance estimation
error and is optimal in the MSE sense. However, if model
inaccuracies due to misdetections occur (Dn �= D̂n), there is
a false impression that the lter is performing well, tracking
the channel response, while in fact it is diverging from the
true state. Moreover, one can not detect that the lter is di-
verging, tracking false trajectories. Incorrect detections may
cause the Kalman lter to choose a wrong trajectory which in

turn would cause more symbols to be misdetected and even-
tually fail the system completely. In order to overcome this
problem we observe that the number of parameters to be es-
timated is 4L, while the number of detections/observations is
2N, and in a typical system 2N >> 4L. This means that not
all detections are needed in order to get an estimate of hn. In-
stead of using the whole block of data (2N observations), one
can choose a subset, whose reliability in terms of detection
con dence is high and use only those to track the channel
impulse response. Conceptually, it would be like assigning
weights to each subcarrier, and the weight factor can have a
binary value {0, 1}, so that only subcarriers with a weight of
1 will be taken into account and the rest will be pruned. In
this case the state-space would have the form of

hn = Ahn−1 + vn (16)

ΨnYn = Ψn(D̂nWhn + Zn) (17)

where Ψn is a 2N × 2N diagonal matrix and its diagonal
entries contain one of two possible values {0, 1}. We de ne
the following criterion for the reliability of the detection of
the symbols of the kth subcarrier:

Λk ≡

⎧⎨⎩1, min
{ ∣∣∣Λ(i,j)

k

∣∣∣} ≥ T ;
{

1≤i≤2 log
2
|A|

j = 1, 2

}
0, else

(18)

where T is a prede ned threshold value. This method assurers
that if all 2 log2 |A| bits of the kth subcarrier of both layers are
reliable, we will use them for the purpose of channel tracking.
The matrixΨn can now be formed by assigning the values of
Λk to the its main diagonal.

Ψn (k,k) ≡

{
Λk, 1 ≤ k ≤ N

Λk, N + 1 ≤ k ≤ 2N
(19)

In every block of data, a different set and number of detections
may be used to track the channel hn. It is important to point
out that while only a subset of the whole measurements are
used for channel tracking, all 2N log2 |A| bits are detected,
since the output of the system at each block is 2N log2 |A|
detected bits. Finding the optimal threshold is a very complex
task, which involves the analysis of the error propagation of
misdetections of the Kalman lter. In general, there is no
closed form for nding the optimal threshold and we need to
resort to simulations.

4. SIMULATIONS

In this section we present the simulation results. The MIMO-
OFDM setup is the following: The carrier frequency is fc = 4
GHz, the number of subcarriers, N, is set to be 64. The
available bandwidth is 1MHz and the modulation scheme is
QPSK. The channel response hn(l) is assumed to be a multi-
path with independent exponential decay power pro les, where
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the length of the channel L is set to 4. We consider two nor-
malized Doppler offsets: 0.0119 and 0.0166, corresponding
to two terminal velocities of 50 km/hr and 70 km/hr, respec-
tively. In order to nd the optimal value of the threshold de-
ned in (18), Monte Carlo simulations for different SNRs and
threshold values were conducted. The chosen threshold for
each SNRwas the one that minimized the bit error rate (BER).
The results for the optimal thresholds are depicted in Figure
2. The BER and the channel estimation mean square error
(MSE) results are depicted in Figure 3 and Figure 4, respec-
tively. Four methods are compared. The rst one is the “all”,
in which all 2N detections are taken into account. The second
one is our proposed “pruning”, using the optimal threshold.
The third one is the “oracle” method, in which at each block,
only correct detections are taken into account, thus, eliminat-
ing the error propagation effect. This is the lower bound for
our algorithm. The forth method is the “CSI”, where we as-
sume that the channel impulse responses are ideally known
at the receiver. “CSI” method serves as the lower bound for
the BER of the system. It is clear that our algorithm is sub-
stantially better than the “all” method, in terms of both BER
and MSE. Our algorithm almost achieves the “oracle” lower
bound, while the “all” is unable to track the correct trajecto-
ries of the channel, as shown in the MSE in Figure 4.
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Fig. 4. Channel estimation error for FmTs =
{0.0119, 0.0166}

5. CONCLUSIONS

In this paper we present a novel zero-forcing symbols detec-
tion and decision-directed channel tracking using Kalman l-
ter for MIMO-OFDM systems. We address the problem of
mismodeling of the state-space equations due to misdetected
symbols, which causes the Kalman lter to diverge. We show
that in order to perform channel tracking, not all observations
are required, but instead, it is possible to take into account
only those with high reliability. The simulation results show
a considerable improvement over a system without pruning in
terms of both channel estimation error and bit error rate.
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