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ABSTRACT

We consider a distributed optimization problem whereby two nodes
S1, S2 wish to jointly minimize a common convex quadratic cost
function f(x1, x2), subject to separate local constraints on x1 and
x2, respectively. Suppose that node S1 has control of variable x1

only and node S2 has control of variable x2 only. The two nodes
locally update their respective variables and periodically exchange
their values over a noisy channel. Previous studies of this problem
have mainly focused on the convergence issue and the analysis of
convergence rate. In this work, we focus on the communication en-
ergy and study its impact on convergence. In particular, we con-
sider a class of distributed stochastic gradient type algorithms im-
plemented using certain linear analog messaging schemes. We study
the minimum amount of communication energy required for the two
nodes to compute an ε-minimizer of f(x1, x2) in the mean square
sense. Our analysis shows that the communication energy must grow
at least at the rate of Ω(ε−1). We also derive speci c designs which
attain this minimum energy bound, and provide simulation results
that con rm our theoretical analysis. Extension to the multiple node
case is described.

Index Terms— Distributed optimization, Sensor networks, En-
ergy constraint, Stochastic gradient method, Convergence

1. INTRODUCTION

Consider a network of n nodes which collaborate to minimize a cost
function f(x1, x2, . . . , xn), subject to separate constraints on xi,
where xi is a local (vector) variable controlled by node Si. Each
node can perform local computation and exchange messages with
a set of prede ned neighbors through orthogonal noisy channels.
Moreover, we assume f(x1, x2, . . . , xn) has a certain “local struc-
ture” in the sense that its partial derivative with the respect to xi only
depends on the local variables at node Si and its neighbors.

A distributed optimization problem of this kind arises naturally
in sensor network applications. For example, in the sensor localiza-
tion problem, we are given the locations of anchor nodes and dis-
tance measurements between certain neighbor nodes in the network.
The goal is to estimate the locations of all sensors in the network by
distributed minimization of a cost function f(x1, x2, . . . , xn) de-
ned by the L1 norm of distance errors [2]. In this context, xi is
the location of sensor Si and is to be estimated by Si. The location
xi may be required to satisfy some local constraints representing a
priori information (e.g. range) available at sensor Si. To minimize
f(x1, x2, . . . , xn), sensor Si periodically updates its local variable,
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xi, and exchanges information with neighbor nodes through orthog-
onal noisy channels. A special feature of this problem is the fact that
nodes are battery operated and hence energy-constrained. Note that
energy of each node is consumed for various operations including
local computation and inter-sensor communication, with the latter
being the dominant part. This motivates us to study the minimum
amount of communication energy required for distributed optimiza-
tion.

Energy consumption has not been a consideration of algorithm
design in classical distributed optimization [1]. Even recent studies
of distributed optimization in the context of sensor networks [6, 3]
have mainly focused on convergence issues such as convergence cri-
teria and convergence rate. To the best of our knowledge, the most
relevant work to this paper is [5] which studied the minimum number
of bits that must be exchanged between two nodes in order to nd
an ε-minimizer of f . However, unlike our current work the commu-
nication channel is assumed distortion-less in [5], and there was no
effort to characterize minimum energy consumption.

The main contributions of this paper are twofold. First, we es-
tablish an asymptotic lower bound for communication energy re-
quired to obtain an ε-minimizer of f . Second, we provide speci c
designs which attain this minimum energy bound. We start with a
two node case which is later generalized to the multiple node case.
The considered cost function is quadratic and convex. The general-
ization of this work to a general cost function (e.g f(x1, x2, . . . , xn)
in the stated sensor localization problem) is a subject of ongoing re-
search.

We adopt the following notations: all matrices and vectors will
be denoted by upper case characters and bold lower case, respec-
tively. For any variable xi, we use xj

i (t) to indicate the value of xi

at node Sj and iteration t. An asymptotic lower bound and asymp-
totically tight bound will be denoted by Ω and Θ, respectively.

2. ALGORITHM FRAMEWORK

We consider a distributed optimization problemwith n nodes, Si, i ∈
{1, . . . , n}, jointly minimizing a convex quadratic function f(x) =
1
2
xT Ax + bT x + c, x = [x1, . . . , xn]T , where A ∈ Rn×n, A �

0 and b, c ∈ Rn×1. Node Si has control of scalar variable xi

and knows Ai and bi which are the ith row of A and b for i ∈
{1, . . . , n}, respectively. Nodes communicate through orthogonal
time-invariant noisy channels using analog messaging. The commu-
nication channel between nodes Si and Sl is corrupted by additive
noise, ni,l(t), with zero mean and variance σ2

i,l. In this model, the
received signal by node Sl from Si, ri,l(t), is

ri,l(t) = yi(t) + ni,l(t), (1)
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where yi(t) is the signal transmitted by node Si. Therefore, commu-
nication energy at iteration t is proportional toE[‖yi(t)‖2] whereE
is the expectation operator. This paper aims to derive the communi-
cation energy required to obtain an ε-minimizer of f(x) in the mean
square sense. A point x is an ε-minimizer of f(x) in the mean square
sense if E[‖x − x∗‖2] ≤ ε, where x∗ is the optimum point. In the
sequel, we start with a two node case and will extend the results to
the multiple node case in Section 3.1.

A distributed algorithm consists of two parts: a communication
scheme and a local computation scheme at each node.
A. Communication scheme: After each local update, node Si, i ∈
{1, 2} should relay its information to the other node. One way is to
directly send the updated value of its local variable, xi

i(t+1), result-
ing in a communication power of E[‖xi

i(t + 1)‖2] which converges
to a constant value. An alternative way is to send the incremental
value, xi

i(t + 1) − xi
i(t), in which case the communication power,

E[‖xi
i(t + 1) − xi

i(t)‖2], would vanish if xi
i converges. In general,

we can consider a linear analog messaging scheme where the trans-
mitted signal, yi(t), is given as,

yi(t) = [xi
i(t) − γ(t)xi

i(t − 1)], t = 1, . . .. (2)

In this equation, γ(t) is a positive coef cient to be chosen (γ(1) =
0). Therefore, the total communication energy of Si is

Ei
com(T ) =

T∑
t=1

E‖xi
i(t) − γ(t)xi

i(t − 1)‖2. (3)

Equation (3) shows that in order to reduce communication energy,
γ(t) should converge to 1. Note that the choice of γ(t) must also
ensure the convergence of the distributed algorithm.
B. Local computation scheme: Optimization algorithms in the pres-
ence of noise can be performed based on the stochastic gradient type
algorithm or the so-called Robbins-Monro algorithm [4]. One itera-
tion of this algorithm is given as,

x(t + 1) = x(t) − a(t)g(x), t = 1, . . . ,

where a(t) is a vanishing positive step size satisfying
∞∑

t=1

a(t) → ∞;

∞∑
t=1

(a(t))2 < ∞, and g(x) is a noisy version of

the gradient vector of f(x). We consider a distributed implementa-
tion of the stochastic gradient type algorithm whereby Si, i ∈ {1, 2}
tracks the other node variable according to

xi
j(t + 1) = γ(t)xi

j(t) + rj,i(t). (4)
Here rj,i(t) is the received message from node Sj at iteration t as
de ned by (1)-(2). Node Si uses this noisy copy to estimate gi(x),
the partial derivative of f(x) with the respect of its local variable xi

i,
and update xi

i as
at node S1:
x1

1(t + 1) = x1
1(t) − 1

t+1
g1

(
x1

1(t), x
1
2(t + 1)

)
at node S2:
x2

2(t + 1) = x2
2(t) − 1

t+1
g2

(
x2

1(t + 1), x2
2(t)

)
.

(5)

Here, we have chosen a(t) = 1
t+1
. In the next section, we derive a

convergence condition on γ(t) which will be used to bound the total
communication energy.

3. A CONVERGENCE CONDITION AND REQUIRED
COMMUNICATION ENERGY

De ne α(j, t) :=
t∑

i=j

Θ
(

i+1
t+1

)λmin

i + 1

i∏
k=j+1

γ(k), where λmin is

the smallest eigenvalue of the matrixA, and
j∏

k=i

γ(k) := 1 for i > j.

Theorem 1
(a) The distributed algorithm described by (2), (4), (5) converges

to the global minimum of f(x) in the mean square sense when
γ(k) satis es

lim
t→∞

t∑
i=0

(α(i, t))2 → 0. (6)

(b) To obtain an ε-minimizer of f(x) in the mean square sense, the
required communication energy must be at least Ω(ε−1).

Proof (a) We start with the iterative update in equation (5) and ob-
tain a tight bound for the mean square error in terms of the initial
values of local variables and channel noise variance. Then, we show
that this bound converges to zero under condition (6). We will need
the following lemma which is stated here without a proof,

Lemma 1 For any positive, decreasing integrable function h(x),
there holds∫ t+1

i

h(x)dx ≤
t∑

j=i

h(j) ≤ h(i) +

∫ t

i

h(x)dx ≤
∫ t

i−1

h(x)dx.

De ne error at the (t+1)th iteration as e(t+1) := x(t+1)−x∗,
where x(t + 1) := [x1

1(t + 1), x2
2(t + 1)] is the vector of local

variables in respective nodes at (t + 1)th iteration. Using equations
(1)-(2), (4)-(5), we can show

e(t + 1) =

(
I − A

t + 1

)
e(t) +

1

t + 1
v(t).

In this equation, the accumulated channel noise, v(t), is given as,

v(t) = −

⎡
⎢⎢⎢⎢⎣

a1,2

t∑
i=1

t∏
k=i+1

γ(k)n2,1(i)

a1,2

t∑
i=1

t∏
k=i+1

γ(k)n1,2(i)

⎤
⎥⎥⎥⎥⎦ ,

where ai,j is the (i, j)th entry of matrixA, and we used the fact that
matrix A is symmetric. Consider the eigenvalue decomposition of
matrix A:

Λ :=

[
λ1 0
0 λ2

]
= P T AP,

where λi, i ∈ {1, 2} are the eigenvalues of matrix A. For ē(t) :=
P T e(t), and v̄(t) := P T v(t), the error at the (t + 1)th iteration is

e(t + 1)=P

t∏
j=1

(I− Λ

j + 1
)ē(1)−

t∑
i=1

P

t∏
j=i+1

(
I− Λ

j + 1

)
v̄(i)

i + 1
. (7)

For h(x) = − log(1 − λl
x

) and 2λl ≤ i ≤ t, it follows from
Lemma 1 that:

t∏
j=i

(
1 − λl

j + 1

)
= Θ

(
i

t + 1

)λl

(8)

The mean square error at the (t + 1)th iteration can be written as

E[‖e(t + 1)‖2](a)
= Θ

(
1

t+1

)2λmin

+E

⎡
⎢⎣
⎛
⎜⎝ 2∑

l=1

t∑
i=1

Θ
(

i+1
t+1

)λmin

vl(i)

i + 1

⎞
⎟⎠

2⎤
⎥⎦

(b)
= Θ

(
1

t+1

)2λmin

+2(a1,2)
2σ2

t∑
j=1

(α(j, t))2 , (9)
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where α(j, t) is de ned as
t∑

i=j

Θ
(

i+1
t+1

)λmin

i + 1

i∏
k=j+1

γ(k) and σ2 is

variance of channel noise. In preceding derivation, step (a) follows
from equation (8). Step (b) is due to the fact that v1(i) and v2(i), the
components of vector v(i), are uncorrelated random variables with
identical distribution. Equation (9) completes the proof of part (a).
Proof (b) Similar to equation (7), the communication energy can be
written in terms of the initial values of local variables, the accumu-
lated channel noise, and the optimum point where the latter is the
dominant part. Therefore, the total communication energy for nodes
S1 and S2 is

Ecom(T ) =
T∑

t=1

E ‖x(t) − γ(t)x(t − 1)‖2

≥
T∑

t=1

2∑
l=1

(b̄l)
2

⎛
⎜⎜⎜⎜⎜⎝
(
1 − γ(t) − λl

t

) t−2∑
i=1

t−2∏
j=i+1

(
1 − λl

j + 1

)

i + 1
+

1

t

⎞
⎟⎟⎟⎟⎟⎠

2

where b̄ := [b̄1, b̄2]
T = P T b. In this equation, the inner summation

can be written using equation (8):

t−2∑
i=1

t−2∏
j=i+1

(
1 − λl

j + 1

)

i + 1
=

C2

t−2∑
i=1

(i + 1)λl−1

(t − 1)λl

= Θ(1),

where C2 is a positive constant. Therefore, we obtain

Ecom(T ) >
T∑

t=1

2∑
l=1

(Bl)
2

(
1 − γ(t) − Dl

t

)2

(10)

where Dl and Bl, l ∈ {1, 2}, are positive constants. In part (a), we
proved that under condition (6), we have

∀ ε > 0 , ∃ tε : E[‖e(tε + 1)‖2] ≤ ε. (11)

To prove part (b), it is enough to show that for some constant C3,

ε Ecom(tε) ≥ E
[‖e(tε + 1)‖2] Ecom(tε) ≥ C3 > 0.

Using the Cauchy-Schwartz inequality and equations (9) and (11),
we obtain

0≤
tε∑

i=1

α(i, tε)

i
≤

√√√√ tε∑
i=1

1

i2

tε∑
i=1

(α(i, tε))
2≤ C4

√
ε, (12)

where C4 is a positive constant. It follows from equation (9) and

(10) that

Ecom(tε)E
[‖e(tε + 1)‖2

]
≥

2∑
l=1

(Bl)
2

tε∑
i=1

(
1 − γ(i) − Dl

i

)2 tε∑
i=1

(α(i, tε))
2

(a)
≥

2∑
l=1

Bl

(
tε∑

i=1

(
1 − γ(i) − Dl

i

)
α(i, tε)

)2

(b)
≥

2∑
l=1

Bl

⎛
⎜⎝ tε∑

i=1

(1 − γ(i))

tε∑
j=i

Θ
(

i+1
t+1

)λmin

i + 1

j∏
k=i+1

γ(k)−DlC4

√
ε

⎞
⎟⎠

2

(c)
=

2∑
l=1

Bl

⎛
⎜⎝ tε∑

i=1

Θ
(

i+1
t+1

)λmin

i + 1
− DlC4

√
ε

⎞
⎟⎠

2

≥
2∑

l=1

Bl

(
Θ(1) − DlC4

√
ε
)2 (d)

≥ C3.

In this equation, step (a) follows from the Cauchy-Schwartz inequal-
ity. Step (b) is due to equation (12), and de nition of α(i, tε). Step
(c) is the result of changing the order of summation and step (d)
holds for small enough ε.

3.1. Extension to the Multiple Node Case
Under some additional assumptions, Theorem 1 holds in the mul-
tiple node case. Assume that there exists a communication link be-
tween nodes Si and Sj when ai,j �= 0. Furthermore, assume that
nodes operation are synchronized. Then, the same proof of Section
3 applies here with minor changes in part (a) where the accumulated
channel noise becomes

[v(t)]l = −
n∑

m=1,m�=l

al,m

t∑
i=1

t∏
k=i+1

γ(k)nm,l(i) , l ∈ {1, . . . , n}.

Moreover, the same derivation of equation (9) applies and the mean
square error can be written as

E[‖e(t+1)‖2] = Θ

(
1

t + 1

)2λmin

+

n∑
k,l=1,k �=l

(ak,l)
2σ2

l,k

t∑
i=1

(α(i, t))2.

4. OPTIMUM ENERGY DESIGNS

In this section, we prove that γ∗(t) := exp(−t−q), 0 < q < 0.5
attains the minimum energy bound. For brevity, we omit the de-
tail of derivations here. It follows from the de nition of α(i, t) and
Lemma 1 that:

α(j, t) =
t∑

i=j

exp

⎛
⎝−

i∑
k=j+1

1

kq

⎞
⎠

≤ 1

t

(
1 + exp

(
(j + 1)1−q

1 − q

)∫ t+1

j+1

exp

(
− x1−q

1 − q

)
dx

)
≤ 1 + tq

t
,

where the third step is due to the Holder’s inequality. Since q is
less than .5, the convergence condition in Theorem 1(a) is satis-
ed. Moreover, the mean square error decreases asymptotically at
the rate of t2q−1 (equation (9)). Similar to equations (7), (9), we can
show the upper bound on communication energy grows at the rate of
t2q−1 for γ∗(t). This result along with Theorem 1(b) prove that the
communication energy required to compute ε-minimizer of f(x) in
mean square sense grows at the rate of Θ(ε−1).
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5. SIMULATION RESULTS
To illustrate the concept, a simple two dimensional example is con-
sidered. The cost function is a quadratic convex function with A =[

2.1 1
1 2.1

]
, b = [−11, 11]T , and a minimum point at x =

[−10, 10]T ; the channel noise is additive white gaussian noise with
variance one. We also consider exp(−t−q) for q ∈ {1/3, 1/10} in
simulations. Figure 1 shows the mean square error in x1

1 averaged
over 20 runs. This gure con rms that the mean square error de-
creases at the rate of t2q−1 when the accumulated channel noise be-
comes the dominant source of error. Therefore, a higher q results in a
lower convergence rate as well as a lower increase of communication
energy (Figure 2). Furthermore, the mean square error decreases lin-
early with the communication energy (Figure 3). In other words, that
the communication energy required to compute ε-minimizer of f(x)
in mean square sense grows at the rate of Θ(ε−1). These results
agree with our theoretical analysis presented in pervious sections.
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Fig. 3. Mean square error in x1
1 versus the average of the communi-

cation energy

6. CONCLUSION AND FUTUREWORK

We studied the problem of distributed optimization of a general quad-
ratic cost function in an energy-constrained network. We consid-
ered a class of distributed stochastic gradient type algorithms imple-
mented using certain linear analog messaging schemes. It is shown
that the communication energy to obtain an ε-minimizer of a cost
function in the mean square sense must grow at least at the rate of
Ω(ε−1). We derived speci c designs which attain the minimum
energy bound, and con rmed our theoretical analysis by numeri-
cal simulations. The generalization of this work to a general non-
quadratic cost function is possible and is a subject of ongoing re-
search.
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