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ABSTRACT
In this paper, we propose cluster-based distributed averaging

algorithms in forms of fixed iteration and random gossiping.

Nodes within a cluster maintain the same value via broad-

casting by the cluster-head, and information exchange occurs

between neighboring clusters. Clustering essentially allows

nodes in neighboring clusters to be joined, hence the resultant

graph is well-connected and the algorithm converges much

faster. Moreover, since the number of clusters is much smaller

than the number of nodes, the communication and compu-

tation burden of the consensus algorithm is significantly re-

duced.

Index Terms— Distributed Computing, Distributed con-

sensus, Clustering, Sensor networks.

1. INTRODUCTION

The average of node values is desired in many applications,

including distributed detection and estimation, as well as net-

work coordination and optimization. The distributed averag-

ing problem where nodes try to reach consensus on the av-

erage value through iterative local information exchange has

been vigorously investigated recently, see [1, 2] and refer-

ences contained therein. In contrast to schemes which rely

on a spanning tree rooted at a fusion center, such distributed

algorithms scale well as the network grows, and exhibit ro-

bustness to node and link failures. The optimal fixed iteration

for fastest convergence is studied in [1]. The gossip algo-

rithms [3] are designed under the practical constraint that a

node can communicate with only one neighbor at any time

instant. In particular, Boyd et al. [2] proposed a randomized

gossip algorithm, which is more robust to link failures and

can be implemented in an asynchronous manner. A general

concern on this set of fully-distributed algorithms, however,

is incurred delay upon convergence of iterations.

In this paper, we take a hybrid approach by incorporating

clustering techniques into distributed algorithms to achieve

faster convergence and reduce communication and computa-

tional complexity. Our work is motivated by two main ob-
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servations. First, in a network where nodes are not well con-

nected, convergence of both fixed iterative and gossiping al-

gorithms is slow. Second, the broadcast nature of the wireless

medium can be exploited to reduce the amount of commu-

nication. We first propose a distributed clustering algorithm.

With one transmission by the cluster-head, nodes in a clus-

ter can maintain the same value at any time instant, hence

a cluster can be viewed as a single entity in the whole net-

work. A pair of clusters are joined by gateway nodes residing

in two different clusters. We propose fixed iteration and gos-

sip algorithms among clusters through information exchange

between gateway nodes. Essentially, clustering allows nodes

in neighboring clusters to become neighbors, hence the con-

nectivity of the resultant graph is greatly improved, leading to

much faster convergence of the consensus algorithms. Clus-

tering has been successfully employed to reduce the amount

of communication for computing decomposable functions in

networks with a fusion center [4]. Since the number of clus-

ters is much smaller than the number of nodes, our algorithms

also significantly reduce the communication and computa-

tional burden. The main overhead of our approach lies in

clustering and the initial averaging within clusters. The paper

is organized as follows. Section 2 describes the desired clus-

ter properties together with a distributed clustering algorithm,

and lays the foundation for analysis. In Section 3, we propose

cluster-based distributed averaging algorithms with fixed iter-

ation and random gossiping, whose performance is analyzed

and verified with simulation results. Section 4 concludes the

paper.

2. CLUSTERING

2.1. Clustering Algorithm

Consider a wireless network represented by a connected graph

G = (V, E), where the vertex set V contains n nodes and E
is the edge set. We assume that the n nodes form K clusters

in such a manner that the following assumptions are satisfied:

1. Each node belongs to one and only one cluster.

2. In each cluster, there is a node which is adjacent to all

the remaining nodes in the cluster. Such a node is called
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a cluster-head. (If more than one such nodes exist, only

one is chosen).

Two clusters are called adjacent (or neighbors) if there is a

direct link joining them. Assume that through some informa-

tion exchange, a cluster-head knows all its neighboring clus-

ters. In the case that two clusters are joined by more than one

links, we assume that the cluster-heads of both clusters agree

on a single such link being activated. The end nodes of active

links are called gateway nodes.

The set of cluster-heads by our assumption is a domi-

nating set, i.e., a subset of nodes which are at most 1 hop

away from any node. The well-known minimum dominating

set (MDS) problem seeks a dominating set of minimum size,

and has been proven to be NP-hard [5]. For related works,

see [6] and references therein. In the following, we describe a

non-iterative decentralized clustering algorithm for choosing

a dominating set.

Assume that each node i knows its one-hop neighbors,

hence its degree di (i.e., the number of neighbors). Initially,

each node sets its own flag to 0, meaning that it does not yet

belong to any cluster. At a certain time, each node i starts

a timer with length ti drawn from an exponential distribu-

tion with rate di. If node i’s timer expires at ti, it becomes

a cluster-head. It sets its flag to 1, and broadcasts a “clus-

ter initialize” message to all its neighbors. Each of its neigh-

bors with flag 0 signals its intention to join the cluster by re-

plying with a “cluster join” message. It also sets its own flag

to 1 and stops the timer. At the end, clusters satisfying the two

properties mentioned above are formed. The particular choice

of timers ensures that high degree nodes have more chances to

become cluster-heads, somewhat like a greedy algorithm. In

this paper we assume that clusters are formed in advance and

the overhead is amortized over the multiple computations.

In this work, we focus on wireless networks modeled by

a geometric random graph G(n, r) [7], where n nodes are

uniformly and independently distributed on a unit square, and

r is the common transmission range of all the n nodes, i.e.,

any two nodes are adjacent if they are within distance r of

each other. The choice of r(n) = Θ
(√

log n
n

)
is commonly

used to ensure connectivity and good energy efficiency [7].

Since any two nodes in a cluster are at most 2 hops apart, the

number of clusters K = Θ
(

n
log n

)
.

2.2. Graph Generated by Clustering

Denote the set of neighbors of i in G = (V, E) by N(i). The

Laplacian matrix for a graph G = (V, E) is defined as

L(i, j) =

⎧⎨
⎩

−1, j ∈ N(i)
di, i = j
0, otherwise.

(1)

Let λ1(L) ≥ λ2(L) ≥ · · · ≥ λn(L) = 0 be the eigen-

values of L in nonincreasing order. The Gerschgorin cir-

cle theorem [8] guarantees that 0 < λ(L) < 2dmax, with

dmax = maxi∈V di.

Let nk denote the size of cluster k (i.e., the number of

nodes in the cluster), and c(i) denote the index of the cluster

that node i belongs to. Consider the new graph Ĝ = (V, Ê),
where the vertex set is the same as in G, but the edge set Ê
is chosen as follows: (i, j) ∈ Ê if c(i) = c(j) or c(i) and

c(j) are adjacent. It is easy to see that if e ∈ E then e ∈
Ê. Moreover, since nodes in the same cluster and adjacent

clusters all become neighbors, we should expect that the new

graph Ĝ is much better-connected than the original graph G.

Denote the Laplacian matrix of Ĝ by L̂, and the degree of

vertex i in Ĝ by d̂i. Note that nodes in the same cluster have

the same degree in Ĝ.

3. CLUSTER-BASED CONSENSUS ALGORITHM

Let vector x(0) = [x1(0), · · · , xn(0)]T contain the initial

values observed by node i, and x̄ = 1
n

∑n
i=1 xi denote the

average value of x(0). The initialization of cluster-based av-

eraging algorithms is as follows. Each node is informed of the

size of the cluster it belongs to from a broadcast message by

the cluster-head. Each node (except the cluster-head) trans-

mits its value to the cluster-head. The cluster-head computes

the average value within the cluster and broadcasts it to all

nodes within the cluster. Let y(t) = [y1(t), · · · , yK(t)]T be

the vector containing the average values each cluster agrees

on at time t. We have

yk(0) =
1
nk

∑
c(i)=k

xi(0), k = 1, · · · , K, (2)

and the node values x̂i(0) = yc(i)(0), i = 1, · · · , n. Each

gateway node sends to its neighboring gateway node the size

of the cluster it belongs to, and forwards the received message

to the cluster-head. Thus a cluster-head has the knowledge of

the sizes of all neighboring clusters.

3.1. Fixed Linear Iteration

For fixed linear iteration, all nodes in the network share a

global schedule. At time instant t, t = 0, 1, · · · , each gate-

way node exchanges its value with its neighboring gateway

nodes. It then forwards the received values to the cluster-

head. The cluster-head of cluster k updates the common value

in the cluster with

yk(t + 1) = yk(t) + α
∑

l∈N̂(k)

nl (yl(t) − yk(t)) , (3)

where 0 < α < 1/d̂max with d̂max = maxi∈V d̂i, and N̂(k)
denotes the set of neighboring clusters of k. This value is

then broadcasted to all nodes in the cluster. Node i updates

its current value with x̂i(t) = yc(i)(t). Therefore, from node
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i’s point of view, we have

x̂i(t + 1) = x̂i(t) + α
∑

j ∈ N̂(i)
c(j) �= c(i)

(x̂j(t) − x̂i(t))

= x̂i(t) + α
∑

j∈N̂(i)

(x̂j(t) − x̂i(t)) . (4)

In matrix form we have

x̂(t + 1) = Ŵx̂(t) = (I − αL̂)x̂(t). (5)

In essence, the above algorithm achieves the linear iteration

with constant edge weights [1] in graph Ĝ. In the follow-

ing, we compare the performance of the above algorithm with

linear iteration with constant edge weights on the original

graph, i.e., the weight matrix is given by W = I − αL, with

0 < α < 1/dmax.

Definition 1. The convergence rate for fixed iteration is

defined as [1]

r = sup
x̂(t) �=x̄1

‖x̂(t + 1) − x̄1‖2

‖x̂(t) − x̄1‖2
. (6)

For linear iteration with a symmetric stochastic weight

matrix W, r = λ2(W), the second largest eigenvalue of W
[1]. Given W = I−αL, we have λ2(W) = max{αλ1(L)−
1, 1 − αλn−1(L)}, hence the following theorem.

Theorem 1: When 0 < α < 1
d̂max

, the cluster-based fixed

linear iteration converges to x̄1 with rate

r = max{αλ1(L̂) − 1, 1 − αλn−1(L̂)}. (7)

In particular, if 0 < α < 1
2d̂max

, then r = 1 − αλn−1(L̂).
Remark 1: On a geometric random graph G(n, r), nu-

merical results indicate that λn−1(L) + λ1(L) < 2dmax al-

ways holds, which implies λ2(W) = 1 − αλn−1(L) for all

0 < α < 1
d̂max

. Hence, on G(n, r), the optimal convergence

rate r∗ = 1− λn−1(L)
dmax

is achieved at the optimal weight 1
dmax

for the original linear iteration. Note that the assumption of

the cluster-heads knowing dmax is not restrictive, since dmax

can be obtained through a simple ripple algorithm that com-

putes the maximum [9]. Furthermore, the above also holds

for the graph Ĝ generated from G(n, r) by clustering. There-

fore, the optimal convergence rate for the cluster-based linear

iteration on G(n, r) is r∗ = 1 − λn−1(L̂)

d̂max
. Due to clustering,

both dmax and the algebraic connectivity λn−1(L) increase,

but the relative increase in λn−1(L) is more dramatic than

that of dmax. On G(100, r(100)), where r(n) =
√

2 log n
n ,

clustering causes
λn−1(L)

dmax
to increase from 0.0521 to 0.3331

(averaged over 1000 realizations). A similar roughly 6-fold

increase can be observed for other values of n.

Remark 2: The ε-averaging time Tave(ε) is defined as the

minimum time required for the relative l2 error to be bounded

by ε. Given the definition of the convergence rate r, it is

easy to see that Tave(ε) = log(1
ε )/ log( 1

r ). Thus on G(n, r)

and for
λn−1(L)

dmax
small, Tave(ε) ≈ log( 1

ε )
(

λn−1(L)
dmax

)−1

. The

above result implies that the cluster-based algorithm converges

about 6 times faster for any n.

Remark 3: It appears that clustering does not improve the

time-complexity of the linear iteration in the order sense, as

clustering only effectively increases the transmission radius

by a factor of about 2 to 3. However, the number of mes-

sages transmitted in each slot is reduced from 2|E| to Θ(|Ẽ|),
where |Ẽ| is the number of active links in Ĝ. On the geomet-

ric random graph with r(n) = Θ(
√

log n
n ), we have |E| =

Θ(n log n). On the other hand, |Ẽ| = Θ(K) = Θ( n
log n ),

since by construction, the number of neighbors of a cluster is

bounded with high probability. This demonstrates a (log n)2

gain in the message complexity.

3.2. Random Gossiping

Let P be a K × K stochastic matrix with the condition that

Pij > 0 if and only if cluster i and cluster j are adjacent. The

cluster-head of cluster k has a clock that ticks at times of a

rate 1 Poisson process. Suppose the t-th tick belongs to the

cluster-head of cluster i. It randomly picks one of its neigh-

boring cluster j with probability Pij , and sends a signal to the

gateway node in cluster i that has an active link to a gateway

node in cluster j. Both gateway nodes exchange their val-

ues, and forward the received value to their respective cluster

head. The cluster head of i and j update their values with

yi(t + 1) = yj(t + 1) =
niyi(t) + njyj(t)

ni + nj
. (8)

The new value is then broadcasted, and nodes in cluster i and

j update their values with x̂v(t) = yc(v)(t). The sum within

the network is retained. The number of message transmis-

sions per round is at most 6 (which may be smaller if the

gateway node is also the cluster-head). Therefore,

x̂(t + 1) = Ŵ(t)x̂(t) = Ŵi,j x̂(t), (9)

where

Ŵi,j(u, v) =

⎧⎨
⎩

1
ni+nj

c(u), c(v) ∈ {i, j}
1 u = v and c(u) /∈ {i, j}
0 otherwise.

(10)

Consider Ŵ = E[Ŵ(t)] = 1
K

∑
i,j PijŴi,j . Let D be an

n × n diagonal matrix with entries

Du =
K∑

j=1

(
Pc(u),j + Pj,c(u)

)
, (11)

and Q be an n × n matrix with entries

Q(u, v) =

{
1
2

Pc(u),c(v)+Pc(v),c(u)

nc(u)+nc(v)
c(u) �= c(v)

1
2

∑K
j=1

Pc(u),j+Pj,c(u)

nc(u)+nj
c(u) = c(v).

(12)
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Then Ŵ can be written as

Ŵ = I − D
K

+
2Q
K

. (13)

If P is doubly-stochastic, then Du = 2, Q is a stochastic

matrix, and Ŵ =
(
1 − 2

K

)
I + 2Q

K .

Definition 2. The ε-averaging time Tave(ε,P) for cluster-

based gossip algorithm is defined as the earliest time at which

x̂(t) is ε close to the true average with probability 1 − ε:

Tave(ε,P) = sup
x̂(0)

inf
{

t : Pr
(‖x̂(t) − x̄1‖2

‖x̂(0)‖2
≥ ε

)
≤ ε

}
. (14)

Note that the relative error is measured with respective to the

initial value x̂(0) instead of x(0). It can be verified that for

each t, Ŵ(t) is a doubly stochastic, symmetric projection

matrix, i.e., Ŵ(t)T Ŵ(t) = Ŵ(t)2 = Ŵ(t). Thus, Ŵ is

symmetric, positive-definite and doubly-stochastic. By simi-

lar arguments in [2], the following theorem can be proved.

Theorem 2. The ε-averaging time of the cluster-based gos-

sip algorithm is

Tave(ε,P) =
C log ε−1

log λ2(Ŵ)−1
, (15)

where C ∈ [0.5, 3] is a positive constant. Moreover, for large

K and doubly-stochastic P,

Tave(ε,P) =
CK log ε−1

1 − λ2(Q)
, (16)

where C ∈ [0.25, 1.5] is a positive constant.

Example: We assume that for gossip algorithms, each

node i chooses one of its neighbors with equal probability

1/di. Similarly define matrix P for cluster-based gossip al-

gorithm. Fig. 1 shows the relative error
‖x̂(t)−x̄1‖2
‖x̂(0)−x̄1‖2

vs. the

number of iterations for conventional gossip algorithm and

the cluster-based gossip algorithm, where the result is aver-

aged over 1000 realizations of G(100, r(100)) and initial val-

ues. It is evident that clustering significantly speeds up the

convergence.

Remark 1: Consider the doubly-stochastic P. From Theo-

rem 2, the rapid convergence of the cluster-based gossip algo-

rithm w.r.t. the conventional gossip can be attributed to two

facts. Firstly, because the number of clusters is much less

than the number of nodes, the value of every node is updated

more often under cluster-based gossip (as manifested by the

substitution of n by K). Secondly, since the graph is bet-

ter connected after clustering, the random walk on the graph

mixes faster, i.e., the mixing time 1
1−λ2(Q) becomes smaller

than the corresponding walk on the original graph.

Remark 2: In the above, the ε-averaging time is measured

in the relative sense, as opposed to the absolute time consid-

ered in [2]. The message complexity of asynchronous gossip

algorithms is of the same order as the relative averaging time,

since the number of transmissions per time instant is bounded

and independent of n.
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Fig. 1. Decay of relative norm-2 error for conventional and

cluster-based gossip algorithms on G(100, r(100))

4. CONCLUSION

Cluster-based distributed averaging algorithms in forms of

fixed linear iteration and random gossiping are proposed. Both

are shown to provide much faster convergence and reduced

communication and computation complexity than their non-

cluster-based variants.
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