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ABSTRACT
A fundamental issue in Bayesian decentralized estimation over a
sensor network is the inadvertent multiple re-use of data also known
as data incest. We show the relationship between data incest and the
network topology by using a graph theoretical formulation. A novel
necessary and suf cient condition based on the topology of the
network is derived so that data incest management can be optimally
achieved. This approach requires large storage capabilities at the
sensor level. In the case of an arbitrary network, if the necessary and
suf cient condition for data incest does not hold then nding a sub-
optimal strategy requires solving a 0-1 integer optimization problem
where the dimension of the vector to optimize increases with time.
Numerical results illustrate the effectiveness of our approach.

Index Terms— Sensor Network, Decentralized Estimation,
Data Incest, Graph Theory

I. INTRODUCTION
Consider a network composed of multiple sensors used to

collect noise corrupted observations of a target or situation. A
centralized architecture which consists of each sensor transmitting
measurements directly to a fusion center is theoretically optimal.
However, this centralized approach has several disadvantages. First,
a centralized architecture requires a high bandwidth to collect
measurements and the fusion center requires high computation
abilities. Second, survivability of the fusion center is critical.
Finally, the user access to fused estimates can be slow. Thus, there
is a great deal of interest in network-centric warfare applications [1]
for decentralized architectures [2]. In a decentralized architecture,
all information is processed locally at each sensor and no central
processing is used. Due to bandwidth constraints, the sensors
only communicate their estimates over the network and are not
allowed to transmit raw measurements. One of the main issues in
a decentralized architecture is to develop an algorithm so that each
sensor is able to compute an estimate based on its own information
and the estimates received from other sensors.
An estimate computed must have two properties. First, an

estimate must be optimal in the sense that it is equal to the
estimate obtained in an ideal network where measurements instead
of estimates are broadcast through the network. Second, an estimate
must be free of data incest. The recursive nature of the estimation
process requires to pay attention to the possible abusive re-use of
measurement information [3].
The key requirement is to fuse estimates sharing a common

information set. A rst approach consists of formulating this
problem as fusion with unknown correlation. A consistent estimate

can be derived using Covariance Intersection [4]. However, this
algorithm based on the convex combination of information is by
nature sub-optimal. The recursive nature of the estimation process
implies the knowledge of the information already integrated. A
second approach is to use consensus avering technique based on
an asymptotical property [5]. A third approach consists of assuming
a complete or partial knowledge of sensor network topology. Using
this kind of assumption, optimal estimates free of data incest can be
derived for some particular topologies. An optimal solution can be
computed for fully interconnected networks using the Decentralized
Kalman Filter [6] or the Decentralized Information Filter [7]. Grime
et al [7] solved the case of connected tree networks by combining
a Decentralized Information Filter and a Channel Filter. Dodin et
al extended this principle in [8] to geodetic graphs. McLaughlin
[3] investigated the case of Fully Interconnected Networks which
Maximum communication delay using a Decentralized Information
Filter combined with a Data Incest Management. He derived a suf-
cient condition on the topology of the network which guarantees
that data incest problem can be solved. Chong et al introduced
graph information which is a directed graph to identify common
information in [9].
In this paper, we investigate the case of arbitrary network

topologies using graph theory. This approach is based on the work
of McLaughlin [3] which showed that information ow in the
network can be represented by a Directed Acyclic Graph. First,
we show in Section II that the Adjacency Matrix and the Transitive
Closure Matrix which are classical tools of graph theory are the key
tools to understand the topology of the network and consequently
to derive optimal estimates free of data incest. Then, an original
necessary and suf cient condition on the topology of the network
which guarantees that optimal estimates free of data incest can be
computed is derived. We show in Section III that if this condition
does not hold, nding a sub-optimal strategy implies solving a
0-1 integer optimization problem. This approach is illustrated by
simulation results in Section IV.
II. DECENTRALIZED ESTIMATION IN AN ARBITRARY

NETWORK
Consider a network consisting of S sensors where each sensor

observes an unknown d-dimensional vector x. Let z�k,s� be the
measurement observed by sensor s at time k:

z�s,k� = H�s,k�x + v�s,k� , s ∈ {1, . . . , S}, k ∈ N
∗ (1)

where v�s,k� denotes a white Gaussian noise sequence with co-
variance matrix R�s,k�. For the sake of simplicity, the following
re-indexing scheme is used:
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n � �s, k� � s + S(k − 1) . (2)
Consequently, (1) can be rewritten:

zn = Hnx + vn , (3)
Hn is a known matrix that relates the unknown parameter to
measurement n. At each time instant k, each sensor must update
its estimate using the measurement observed and the information
received from other sensors. Let us consider two types of networks.
De nition 1 (Ideal network): In an ideal network, the sensor

nodes broadcast all the measurements they have observed or
received.
De nition 2 (Constraint network): In a constraint network,

the sensor nodes broadcast their estimates.
An ideal network is inconvenient in practice as the amount of
information to transmit is too large. However, this network is
interesting from a theoretical point of view. As shown in section
II-B, estimates free of data incest can always be computed in an
ideal network. Moreover, these estimates are directly related to
some classical tools of graph theory discussed in section II-A. We
derive in section II-C an original necessary and suf cient condition
which guarantees that the estimates in constraint network and ideal
network will be equal.

II-A. Decentralized estimation and graph theory
We review the de nitions of the Adjacency Matrix and the

Transitive Closure Matrix which are classical tools of graph theory
to study the communication topology of graph. We will see in
section II-B that the optimal estimates free of data incest in ideal
networks are directly related to these two matrices.
De nition 3 (Graph): A graph Gn is a pair (Vn, En) where

Vn � {v1, . . . , vn} is the set of vertices and En ⊂ Vn × Vn the
set of edges between the vertices.
De nition 4 (Adjacency Matrix): Let Gn = (Vn, En) be a

graph. The Adjacency Matrix An of Gn is a n×n−matrix whose
entries, An(i, j) are given by:

An(i, j) =

j
1 if (vj , vi) ∈ En ,
0 otherwise . (4)

De nition 5 (Transitive Closure Matrix): Let Gn =
(Vn, En) be a graph. The Transitive Closure Matrix Tn of
Gn is a n× n−matrix whose entries, Tn(i, j) are given by:

Tn(i, j) =

j
1 if there is a path beween vj and vi ,
0 otherwise . (5)

The information ow in a sensor network can be represented by
a Directed Acyclic Graph (DAG). A node vj ∈ Vn represents a
speci c sensor sj at a speci c time kj . This choice implies that the
set of edges does not represent only the transmission of information
between different sensors. There is an edge from vertex vj to vertex
vi in three cases:
1) an information is broadcasted from sensor sj at time kj and
received by sensor si at time ki ,

2) sj = si and kj < ki ,
3) sj �= si and it exists l �= i such that sl = si, kl ≤ ki and

(vj , vl) ∈ En .
The second case arises when two vertices of the graph correspond
to the same sensor at different time. If an information is available at
time kj , it is still available at time ki. The third case corresponds to
the case where a vertex si received an information from a different
sensor sj at a previous time kl. Now, using the re-indexing scheme
(2), we deduce that if i < j then (vj , vi) /∈ En. Consequently, the

Adjacency Matrix is a strictly upper triangular matrix and Gn is a
DAG. Then, the Transitive Closure Matrix Tn is directly computed
from An using the following formula:

Tn = g({In − An}
−1) , (6)

where In is the n×n identity matrix. g is a function such that for
a n× n-matrix B, C � g(B) is a n× n-matrix where C(i, j) is
equal to zero if B(i, j) = 0 and one else. Eq.(6) is derived from
the classical interpretation of matrix {In−An}

−1. Entry in row i
and column j of this matrix gives the number of paths from vertex
i to vertex j.

II-B. Optimal estimation for ideal networks
We derive new formulas to compute optimal estimates free

of data incest in an ideal network at node n in this section.
The optimal estimate is presented in proposition 1 using the
classical information lter notations which are reproduced below
for convenience:j

in � Ht
nR−1

n zn ,

In � Ht
nR−1

n Hn

and
j

ŷn � P̂−1

n x̂n

Ŷn � P̂−1

n ,
(7)

where Rn is the measurement error covariance at node n and Hn

is de ned by eq.(3). We note x̂n the optimal estimate observed
by node n, and P̂n the estimation error covariance matrix. We
also introduce the following vector notation where t denotes the
transpose:

i1:n � [it1, . . . , i
t
n]t , and I1:n � [I1, . . . , In]t . (8)

Proposition 1 (Optimal estimation in an ideal network):
Let Gn be a DAG representing an ideal sensor network. The
optimal estimate free of data incest at node n is given by the
following equations:j

ŷn = (tn ⊗ Id)i1:n−1 + in ,

Ŷn = (tn ⊗ Id)I1:n−1 + In ,
(9)

where tn is the 1×(n−1) left lower sub-matrix of Tn (the Transitive
Closure Matrix). ⊗ is the direct matrix product and Id is the d×d
identity matrix where d is the dimension of the unknown state x.
Proof: Proof is presented in Appendix A. �
According to proposition 1, the optimal estimate free of data

incest can be expressed as a linear function of the measurements
via the transpose Transitive Closure Matrix Tn. This formula is
quite intuitive, the optimal estimate at node n is the sum of the
information collected by the nodes such that there are paths between
all these nodes and n.

II-C. Optimal estimation for constraint networks
Based on the result on the optimal estimation in ideal networks,

an original proposition for the optimal estimation in a constraint
network is derived. We prove that estimates in the constraint
network are equal to the estimates in ideal networks if and only if
the topology of the graph as a topology verifying property 1 de ned
below. We summarize in Algorithm 1 the steps of the algorithm.
First, let us describe the class of estimates which can be built in

the constraint network. At node n, the estimate is a weighted sum
of estimates received from previous nodes ỹ1:n−1 and the current
information in so that the estimate at node n has the following
formulation:j

ỹn = (wn ⊗ Id)ỹ1:n−1 + in ,

Ỹn = (wn ⊗ Id)Ỹ1:n−1 + In .
(10)

Moreover, we have a constraint wn which indicates that some
estimates are not available to node n due to the graph topology.
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Constraint 1 (Topological constraint):

if an(j) = 0 then wn(j) = 0 ∀ j ∈ {1, . . . , n − 1} (11)

where an is the 1× (n−1) right upper matrix of adjacency matrix
An associated to Gn. ⊗ is the matrix direct product. Id is the
d× d identity matrix and d the size of the unknown state x.
proposition 2 guarantees that there is a unique solution for wn if
the Adjacency Matrix An veri es property 1.
Property 1 (Optimality of graph): Let Gn be a DAG. This

graph has an optimal topology at node n if

(an(j) − 1)wn(j) = 0 ∀ j ∈ {1, . . . , n − 1} (12)

where
• an is the 1× (n−1) right upper matrix of An the Adjacency
Matrix ,

• wn is the 1 × (n − 1) left upper matrix of T−1

n (Tn is the
Transitive Closure Matrix transpose).

Proposition 2 (Optimal estimation in a constraint network):
Let Gn be a DAG representing a constraint sensor network. It is
assume that the n − 1 latest nodes have been able to compute
optimal estimates. If and only if Gn satis es property 1, the
optimal estimate free of data incest at node n is given by the
following formula:j

ỹn = (wopt
n ⊗ Id)ỹ1:n−1 + in ,

Ỹn = (wopt
n ⊗ Id)Ỹ1:n−1 + In

(13)

where vector wopt
n is given by:

wopt
n = tnT−1

n−1 (14)
and tn is the 1×(n−1) left lower sub-matrix of Tn (the Transitive
Closure Matrix transpose). ⊗ is the matrix direct product. Id is the
d× d identity matrix and d the size of the unknown state x.
Proof: Proof is presented in Appendix A. �
By proposition 2, the existence of an optimal estimate for node

n is directly related to the topology of the network. However, there
are three major drawbacks to this approach:
1) We assume that a node knows exactly the communication
topology of the network. This assumption may not be quite
realistic, however, this is a rst step toward a estimation
process free of data incest based on a partial knowledge of
the topology of the network.

2) If the network topology does not satisfy property 1, a sub-
optimal strategy must be derived.

3) Equation (13) implies that node n has to store all the esti-
mates computed through time and all the estimates received.
This amount of information corresponds at most n−1 pieces
of information. Consequently, the quantity of information to
store increases with time.
III. SUB-OPTIMAL STRATEGY FOR ARBITRARY

NETWORKS
According to proposition 2, if property 1 does not hold, an

optimal estimate free of data incest can not be computed. We
show that a sub-optimal strategy is the solution of a 0-1 integer
optimization problem.
We assume that until node n − 1, estimates free of data incest

can be computed but that the assumption on network topology is
not checked at node n. Then, optimal weight vector of proposition
2 can not be used because it involves unavailable information. A
sub-optimal weight vector wsub

n which veri es property 1 must be
computed. The latter must be such that the sub-optimal estimate

ysub
n is free of data incest and closed to the optimal estimate ŷn.
If we choose wsub

n in the following set:
Wn � {w∗n|w

∗
n = t∗nT−1

n−1
, t∗n ∈ {0, 1}⊗n−1}

∩{w∗n|w
∗
n veri es constraint 1 } ,

(15)

the estimate obtained is free of data incest and the weight vector
veri es property 1. We now show why these weight vectors
guarantees that the estimate compute is free of data incest. Let ỹn

be the estimate computed using a weight vector from (15). Using
the de nition of w∗n given by (15) and the formula of optimal
estimate free of incest in ideal networks given by (9), eq.(10)
becomes:

ỹn = (t∗n ⊗ Id)i1:n−1 + in . (16)
By de nition t∗n belongs to {0, 1}⊗n−1. Consequently, each mea-
surement information appears only once in the formula (16) and
the estimate is free of data incest. Now, we would like to choose
w∗k ∈ Wn so that ỹn is closed to the optimal estimate free of data
incest. This is a problem of optimization which can be written as
follows:

wsub
n = argmin

w∗

n
∈Wn

‖w∗n −wopt
n ‖ . (17)

whereWn is de ned by (15). Using the de nition of w∗n and wopt
n ,

this problem can be rewritten as follows:

tsub
n = argmin

t∗
n
∈Xn

‖t∗n − tn‖ where (18)

Xn � {t∗n ∈ {0, 1}⊗n−1|w∗n = t∗nT−1

n−1
veri es constraint 1 }.

This is a 0-1 integer optimization problem. Unfortunately, it seems
that this problem does not have a closed-form solution in the
general case. Moreover, as the dimension of the vector to optimize
(i.e. n − 1) is increasing with the number of nodes, this problem
will quickly become intractable.

IV. SIMULATIONS RESULTS
To illustrate the performances of the optimal estimate free of

data incest (algorithm 1) in the context of an arbitrary network, a
network of 20 sensors having a ring communication topology with
a random delay is considered. The communication delay is the same
for each of the sensors but changes randomly through time. One
can show using simulation that this topology veri es property 1.
Then, according to proposition 1, the optimal estimate free of data
incest (algorithm 1) can be computed. The latter is compared with
the classical Covariance Intersection (CI) [4]. The comparison is
based on three criteria:
• Mean Square Error (MSE),
• Error ellipse area,
• Storage requirements.

The duration of the scenario is 100 seconds. The measurement error
covariance associated to measurement z�s,k� is

R�s,k� =

„
σ2

x sin2 βs + σ2

y cos2 βs (σ2

y − σ2

x) sin βs cos βs

(σ2

y − σ2

x) sin βs cos βs σ2

x sin2 βs + σ2

y cos2 βs

«
(19)

where βs = atan(rs
y−ry, rs

x−rx). Terms (rs
x, rs

y) and (rx, ry) are
respectively the position of sensor s and the position of the target
on x-y plan. Constants σx and σy are xed to 8 m and 40 m. The
measurement covariance matrix (19) is such that each sensor gives
a “speci c information on the target position” which depends on
relative position of the target to the sensor.
We can see in Fig.1 that the MSE associated to the optimal

estimate free of data incest is lower than the MSE associated to
the CI. Fig.2 shows the error ellipse area for the optimal estimate
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free of data incest versus CI. The error ellipse area for the optimal
estimate free of data incest is lower than error ellipse area for
CI. Moreover, if we compare the performance for the last node
at the end of scenario, we observe that the optimal estimatation
free of data incest is [150, 150] ± 0.75 m when the CI gives
[150, 150] ± 15 m. Consequently, the performances of the new
algorithm in terms of accuracy and con dence are better. Fig.3
presents the variation of the quantity of information to store locally
for each of two algorithms. The storage requirements for CI is
constant through time when the storage requirement of the Optimal
estimate free of data incest increases linearly with time. This fact
has been explained in section II.
We have shown through simulation results that the optimal

estimate free of data incest outperforms CI. These results were
predictable because of the optimal nature of the new algorithm.
However, the storage requirements of this new algorithm increase
linearly with time. This drawback will be an important issue for
future works.

V. CONCLUSION
We highlight in this paper the relationship between decentralized

estimation networks and some classical tools of graph theory. The
main result is an original necessary and suf cient condition based
on the topology of the network which guarantees the optimality
of the estimates. The algorithm outperforms the classical Covari-
ance Intersection. This original framework based on graph theory
offers a new way of regarding decentralized estimation networks
problems. Future works will aim at enriching this framework to
handle the estimation of Markovian processes and partially known
communication topologies. Moreover, sub-optimal techniques will
be developed to reduce the storage requirements.

APPENDIX A: PROOF OF PROPOSITION 1
First, left multiple eq.(3) by (tn(j) ⊗ Id)H

t
jR
−1

j to obtain x̂n

mean square estimate and P̂n the estimation covariance matrix:(
x̂n = P̂n

Pn

j=1
(tn(j)⊗ Id)H

t
jR
−1

j zj ,

P̂−1

n =
Pn

j=1
(tn(j)⊗ Id)H

t
jR
−1

j Hj

. (20)

Then, express eq.(20) using the information lter notations (see
eq.(7)).

APPENDIX B: PROOF OF PROPOSITION 2
Using proposition 1 and remarking that Tn(n, n) is always equal

to one (see eq.(6)), eq.(10) gives the following equality:
(tn ⊗ Id)i1:n−1 = (wopt

n ⊗ Idd)(T
t
n−1 ⊗ Id)i1:n−1 . (21)

This relation must be true for any measurement information so that
wopt

n formula given by eq.(14) is proved. Now remind that Tn is
a upper triangular matrix with ones on the diagonal, consequently
wopt

n is the 1 × (n − 1) right upper matrix of T−1

n . Then, wopt
n

will verify constraint 1 if and only if property 1 is true.
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Algorithm 1 Optimal estimation in constraint network
For k = 1, . . . and s = 1, . . . , S

1) Compute the optimal weight vector wopt
n using eq.(14)

2) Compute the estimate ỹn and Ỹn using eq.(13)
3) Compute the estimate x̃n = Ỹ −1

n ỹn and P̃n = Ỹ −1

n

End for
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Fig. 1. Mean Square Error for Covariance Intersection versus
optimal estimate free of data incest.

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

rat
io

node

Fig. 2. Ratio of error ellipses area for optimal estimate free of data
incest versus Covariance Intersection.

0 10 20 30 40 50 60 70 80 90 100
0

2

4

6

8

10

12

14

16

18

time

Qu
an

tity
 of

 inf
orm

atio
n

Optimal estimate free of data incest
Covariance Intersection

Fig. 3. Variation of the quantity of information stored at sensor level
through time for Covariance Intersection estimate versus optimal
estimate free of data incest.

III ­ 176


