
A SIMPLE ALGORITHM FOR NEIGHBOR DISCOVERY IN WIRELESS NETWORKS

Daniele Angelosante
DAEIMI
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ABSTRACT

We consider the neighbor-discovery problem in a xed wire-
less network where each node is identi ed by its signature,
and the signatures are chosen so as to limit collisions. Limited-
complexity constraints lead to a simple algorithm based on
incoherent detection of nodes. The performance of this al-
gorithm is evaluated by computing the probability of a false
alarm and of a missed detection of a single node.

Index Terms— Wireless networks, neighbor discovery.

1. INTRODUCTION

In a wireless network, neighbor discovery (ND), i.e., the de-
tection of all neighbors with which a given reference node
may communicate directly, is a crucial task, especially when
the nodes are mobile, and hence the network con guration
is time-varying. As noted in [1], ND may be the rst al-
gorithm run in a network, and the basis of medium access,
clustering, and routing algorithms. In this paper we study a
simple ND algorithm, intended to identify neighbor identities
under a number of simplifying assumptions on the network
behavior. Many of these assumptions can be removed, as we
plan to do in further studies: for example, we may consider
a more general setting in which a dynamic model is known
for the variation of the node parameters (e.g., their power),
and their estimate is also of interest. If the searching node
is equipped with a sectorized (or steerable) receive antenna,
and each node transmits omnidirectionally, neighbor discov-
ery can be performed for each sector, thus obtaining a map of
the neighbor directions.

Following in the footsteps of [1], the basic assumptions
we make in our study are as follows:

1. A node is called a neighbor of the reference node if
its power, received by the latter, exceeds a preassigned
threshold.1

2. Nodes cannot transmit and receive simultaneously on
the same channel.

1Note that this de nition can be generalized: for example, one may de ne
a neighbor as one whose power-to-interference plus noise ratio exceeds a
given threshold [1]. In this paper we stick to a more restrictive de nition,
which allows simpler algorithms.

3. The maximum number of active nodes is xed and -
nite.

4. Each node is identi ed by its own unique signature, and
every node keeps a list of all the signatures of the net-
work.

5. The discovery algorithm runs in a nite period, called a
discovery session, whose duration is denoted TD. Dur-
ing TD, every node also transmits, independently and
randomly with probability ε, a number of signals con-
taining one or more copies of its signature. Each signal
has the same duration (“slot”) T = TD/N .

6. During each session, the parameters of each node do
not change appreciably.

Among the alternatives that should be considered in set-
ting up a ND algorithm, we may list the following:

Deterministic vs. random networks. A deterministic network
has a constant structure, and reorganizations are not
necessary. A typical example [2] is a group of laptop-
computer nodes in a conference room wishing to orga-
nize themselves into a wireless network without resort-
ing to a centralized structure. A random network has a
varying topography/topology, due to to entrance/exit of
nodes or to their movement.

Synchronous vs. asynchronous detection. Synchronous detec-
tion can take place when all nodes transmit under a
common reference frame, which may be allowed by
the presence of a local clock that keeps synchronous
time [2, 3]. This assumption may be realistic in the
context of a small network, whose nodes are so close
to each other that the time misalignments due to differ-
ent arrival times can be disregarded. In asynchronous
detection, the nodes maintain no cooperation among
them, and hence their transmission slots are randomly
misaligned, although they keep one and the same dura-
tion.

Coherent vs. noncoherent detection. Coherent detection may
occur if the receiver is allowed to estimate, within a rea-
sonable accuracy, the phase of the carrier of each signal.
Otherwise, noncoherent detection should be selected.

III ­ 1691­4244­0728­1/07/$20.00 ©2007 IEEE ICASSP 2007



Collision vs. collision-free networks. Collisions may be fully
resolved atmodulation level [4] by transmitting orthog-
onal signatures. If this is not possible because of band-
width restrictions, a moderate amount of collisions is
kept under control by using signatures with small cor-
relation.

The balance of this paper is organized as follows. We
list our basic assumptions, and describe the ND algorithm,
in Section 2. Section 3 provides performance analysis, while
Section 4 shows some numerical results.

2. FORMULATION OF THE PROBLEM; AN ND
ALGORITHM

Our approach owes to the algorithms advocated in [1]. We
consider a static,2 deterministic, and synchronous network
with noncoherent detection. We denote by K + 1 the number
of nodes, so that K is the maximum number of active neigh-
bors of any node. All nodes are identi ed by their (nonorthog-
onal) signatures. Our ND algorithm is based on the transmis-
sion scheme illustrated in Fig. 1 (see also [1]). In every time
interval (“slot”), each node transmits, independently of the
other nodes, with the same probability ε. We also assume that
the reference node receives with probability 1−ε. Discovery

#1
#2
#3
#4

receive interval of reference user
transmit interval of neighboring users

TD

T

Fig. 1. A scheme for synchronous neighbor detection.

of neighbor k, k = 1, . . . , K, is performed by the reference
node by computing the correlation between the received sig-
nal and the signature of node k, and accumulating these cor-
relations over the duration of the discovery session. Consider
for example reference node 0, and discovery of node 1. The
chip-wise signal collected from all potential neighbors during
receiving slot t is

yt =
K∑

k=1

ξk,tαksk + nt

2Consideration of a dynamic network, in which nodes may log in and out
of the network, and change their parameters from session to session accord-
ing to a known model, can be done with the aid of random-set theory (see [5]
and references therein), and will be described elsewhere, along with an ex-
tension of the algorithm presented here intended to estimate the parameters
(e.g., the transmitted power) of the neighboring nodes.

where αk denote the received complex amplitudes,3 sk is the
kth node signature, ξk,t is a random variable taking value 1 if
node k is transmitting at time t, and value 0 otherwise (so that
P(ξk,t = 1) = ε), and nt is additive white Gaussian noise.
Correlation of yt with s1 at receiving time t yields

r1,t � (yt, s1) = ξ1,tα1 +
K∑

k=2

ξk,tαk(sk, s1) + (nt, s1)

At the end of the discovery session, the resulting signal, ob-
tained by summing up the contributions from each slot, is
given by

r �
∑
t∈R0

r1,t = ν1α1 +
K∑

k=2

νkαkρk,1 + n (1)

where R0 is the set of times at which the reference node is
receiving, ρk,1 � (sk, s1), and

νk �
∑
t∈R0

ξk,t n �
∑
t∈R0

(nt, s1)

(in words, νk is the number of slots in which node k is trans-
mitting while node 0 is receiving). Node k is classi ed as a
neighbor if its magnitude |αk| exceeds the “activity thresh-
old” τA. The receiver compares |r| against the “discovery
threshold” τD, and if this threshold is exceeded it includes
node 1 in its neighbor list.4 A “miss” occurs when a node
exceeding the activity threshold is not detected, and a “false
alarm” occurs when a node below the activity threshold is
classi ed as a neighbor. The choice of the discovery threshold
value is clearly a crucial design parameter, as its high value
will cause a high probability PM of a miss, while a low value
will cause a high probability PF of a false alarm. Plotting
PF versus PM yields an indication of the performance of a
discovery algorithm (this should be contrasted with the cost
function of [1, Eq. (1)]).

3. PERFORMANCE ANALYSIS

De ne Ψ to be a random variable describing the con gura-
tion of a discovery session, i.e., the pattern of receive/transmit
activity of each node during each slot. In our analysis, we
assume that the “interference” term in (1) is conditionally
Gaussian given Ψ; speci cally, the “fading gains” αk are com-
plex, circularly Gaussian with mean zero and common vari-
ance σ2

k for their real and imaginary parts. In addition, the
correlations ρk are deterministic. The noise is also circularly
Gaussian, with variance N0 of its real and imaginary part.

3Our assumption of complex amplitudes implies that the signatures are
not detected coherently. In addition, we assume (sk, sk) = 1 for all nodes.

4This receiver is suboptimum, since the interference term (the second one
in the right-hand side of (1)) is not necessarily Gaussian, nor are the signa-
tures orthogonal.
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Formally, we have, for the discovery of node 1,

PM,1 = EΨ

[
P(|r| < τD

∣∣ |α1| > τA,Ψ)
]

PF,1 = EΨ

[
P(|r| > τD

∣∣ |α1| < τA,Ψ)
]

(2)

To evaluate these probabilities, we rst need the conditional
distribution of |r| given |α1| and Ψ. Given the session con g-
uration Ψ, {νk}K

k=1 are known, and hence |r| is conditionally
Rician:

f
(|r| ∣∣ |α1|, Ψ

)
(3)

=
2|r|
Σ2

exp
{
−|r|2 + ν2

1 |α1|2
Σ2

}
I0

(
2|r|ν1|α1|

Σ2

)

where
Σ2

2
�

K∑
k=2

ν2
kρ2

kσ2
k + ν̄0N0

ν0 � |R0| is the number of instants in which the reference
node senses the channel, and I0(·) is the modi ed Bessel
function of rst kind and order 0. We compute PM,1 as the
expectation over Ψ of

P
(|r| < τD

∣∣ |α1| > τA, Ψ
)

(4)

= 1 −
∫ ∞

τD

f
(|r| ∣∣ |α1| > τA, Ψ

)
d|r|

The integrand of the above can be evaluated as

f
(|r| ∣∣ |α1| > τA, Ψ

)
=

P
(|α1| > τA

∣∣ |r|, Ψ)
f(|r|∣∣Ψ)

P(|α1| > τA)

To compute

P
(|α1| > τA

∣∣ |r|,Ψ)
=

∫ ∞

τA

f
(|α1|

∣∣ |r|, Ψ)
d|α1|

we need

f
(|α1|

∣∣ |r|, Ψ)
=

f
(|r| ∣∣ |α1|, Ψ

)
f(|α1|)

f
(|r| ∣∣ Ψ

) (5)

Now,

➀ f
(|r| ∣∣ |α1|, Ψ

)
is Rice (see (3)).

➁ f(|α1|) is Rayleigh: f(|α1|) = |α1|
σ2
1

e−|α1|2/2σ2
1

➂ f
(|r| ∣∣ Ψ

)
is also Rayleigh: f

(|r| ∣∣ Ψ
)

= |r|
σ2 e−|r|2/2σ2

where σ2 � ν2
1σ2

1 + Σ2/2.

Combining ➀, ➁, and ➂ we obtain

f(|α1|
∣∣|r|, Ψ) =

f(|r|∣∣|α1|, Ψ)f(|α1|)
f(|r|∣∣Ψ)

(6)

=
2|α1|
Σ̃2

exp
{
−|α1|2 + |r̃|2

Σ̃2

}
I0

(
2|α1||r̃|

Σ̃2

)

where Σ̃2 � σ2
1Σ2/σ2, and |r̃| � ν2

1σ2
1 |r|/σ2. Since (6) is a

Rice pdf, we have

P (|α1| > τA

∣∣|r|, Ψ) =
∫ +∞

τA

f(|α1|
∣∣|r|,Ψ)d|α1| (7)

= Q1

(
|r|

√
2
ν1

Σ̃
σ2

1

σ2
, τA

√
2

Σ̃

)

where Q1(·, ·) is the generalized Marcum Q-function of order
1 [6, p. 47]. Finally,

f(|r|∣∣|α1| > τA, Ψ) (8)

=
|r|
σ2

e−
|r|2
2σ2 e

τ2
A

2σ2
1 Q1

(
|r|

√
2
ν1

Σ̃
σ2

1

σ2
, τA

√
2

Σ̃

)

Now, from (4) we have

P(|r| < τD

∣∣ |α1| > τA, Ψ) = 1 (9)

− Σ2

2σ2

∞∑
n=0

(
ν2
1σ2

1

σ2

)n

Qn+1

(√
2ν1

Σ
τA,

√
2

Σ
τD

)

where Qn(·, ·) is the generalized Marcum Q-function of order
n [6, p. 44].

Next, we compute the conditional probability of a false
alarm given Ψ. To this end, we compute f(|r|∣∣|α1| < τA, Ψ).

f(|r| ∣∣ |α1| < τA, Ψ) (10)

=
P(|α1| < τA

∣∣ |r|, Ψ)f(|r| ∣∣ Ψ)
P(|α1| < τA)

=
[1 − P(|α1| > τA

∣∣ |r|, Ψ)]f(|r| ∣∣ Ψ)
[1 − P(|α1| > τA)]

=

[
1 − Q1

(
|r|ν1

σ2
1

σ2

√
2

Σ̃
, τA

√
2

Σ̃

)]
f(|r|∣∣Ψ)

[1 − e
− τ2

A
2σ2

1 ]

=
1
2
e

τ2
A

4σ2
1 csch

(
τ2
A

4σ2
1

) |r|
σ2

e−
|r|2
2σ2

×
[
1 − Q1

(
|r|ν1

σ2
1

σ2

√
2

Σ̃
, τA

√
2

Σ̃

)]

where csch(·) is the hyperbolic cosecant. Finally, the condi-
tional probability of false alarm is obtained as

P(|r| > τD

∣∣ |α1| < τA,Ψ) (11)

=
∫ +∞

τD

f(|r| ∣∣ |α1| < τA, Ψ) d|r|

=
1
2

csch
(

τ2
A

4σ2
1

)

×
(

e
τ2
A

4σ2
1 e−

τ2
D

2σ2 − e
− τ2

A
4σ2

1 P
(|r| > τD

∣∣ |α1| > τA, Ψ
) )
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Taking the expectation of (9) and (11) over Ψ yields PM,1

and PF,1, but these cannot be obtained in a closed form. For
simple approximations, a Monte Carlo technique consists of
generating M patterns of Ψ, denoted {ψM

m=1}, according to
the actual node model, and using the estimates

P̂M,1 =
1
M

∑
ψm

P(|r| < τD

∣∣ |α1| > τA, ψm) (12)

P̂F,1 =
1
M

∑
ψm

P(|r| > τD

∣∣ |α1| < τA, ψm) (13)

4. NUMERICAL RESULTS

As a simple example of application, consider K + 1 = 4
nodes whose signatures are length-seven m-sequences. The
duration of the discovery session is set to be TD = 100T ,
thus N = 100. Node amplitudes are zero-mean circularly-
complex Gaussian with variances 2σ2

1 = 1 and 2σ2
3 = 0.25.

The activity threshold is set to be τA = 1, and ε = 0.5. Figure
2 shows the probability of a false alarm vs. the probability of
a miss in the discovery of node 1 when node 2 has a variance
2σ2

2 varying in the range [0, 30] with 2N0 = 1. As expected,
the algorithm we have described here is not near-far resistant.
Figure 3 shows the probability of a false alarm vs. the prob-
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Fig. 2. PF,1 vs. PM,1 where the variance of node 2 is increas-
ing in the range [0, 30] with step-size 5.

ability of a miss in the discovery of node 1 obtained from
simulation and from Monte Carlo approximation in (12)-(13)
when node 1, 2, and 3 have variances 2σ2

1 = 1, 2σ2
2 = 0.5,

and 2σ2
3 = 0.25, respectively. In addition, τA = 1, ε = 0.5,

and 2N0 = 1.

5. CONCLUSIONS

We have described a simple neighbor-discovery algorithm,
based on [1] and including a transmission scheme based on
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Simulation result
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Fig. 3. Comparison between simulation and Monte Carlo ap-
proximation of the probabilities of false alarm and missed de-
tection of node 1.

nonorthogonal signatures. The algorithm performance is il-
lustrated by using a combination of analysis and simulation.
As expected, matched lter is not near-far resistant. Further
work will relax some of the assumptions made here for sim-
plicity, and introduce multiuser detection to better exploit the
problem structure. More precisely, in [7], we introduce a
number of ND algorithms which guarantee near-far resistance
and derive closed formulas for the asymptotic values of the
optimal thresholds.
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