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ABSTRACT
In this paper, we design an optimal precoder for the amplify-
and-forward (AF) half-duplex cooperative system. We rst
present asymptotic pairwise error probability (PEP) expres-
sion and identify the corresponding terms for diversity and
coding gains. By employing the properties of the Farey
sequence in number theory, we obtain a closed form opti-
mal precoder to achieve both full diversity as well as max-
imum coding gain for square quadrature amplitude modula-
tion (QAM) signals. Simulation results indicate that the pro-
posed design signi cantly improves the BER performance of
the relay system.
Index Terms— Cooperative system, half-duplex,

amplify-and-forward (AF), pairwise error probability,
diversity gain function, precoder.

1. INTRODUCTION
Diversity techniques, and in particular, those of spatial diver-
sity, have been employed in practical wireless communica-
tion systems to overcome channel fading. To achieve a higher
spatial diversity gain, multiple transmitter and receiver anten-
nas are usually desirable. However, this is often impractical
for the mobile units due to size and complexity limitation.
Recently, another form of spatial diversity called cooperative
diversity has been proposed for mobile wireless communica-
tions [1–6]. Protocols to implement the cooperative diver-
sity have been proposed [2–4]. These protocols can gener-
ally be classi ed into two types, Decode-and-Forward (DF)
and Amplify-and-Forward (AF) protocols. In a DF protocol
the relay nodes decode the message received from the source
node rst, re-encode it and then transmit it to the destination.
In an AF protocol, the relay nodes retransmit a scaled ver-
sion of the received signal to the destination. An AF protocol
usually has lower complexity than a DF protocol. In [6–8]
distributed space time block codes are designed for both the
DF and AF protocols. In this paper, we consider the prob-
lem of optimal precoder design for the AF protocol. We fo-
cus our attention on the AF protocol proposed in [2, 4]. It
has been proved that the protocol can achieve the optimal
diversity-multiplexing tradeoff [4,9]. For such a protocol, we
rst present an asymptotic pairwise error probability (PEP)
expression. Then, by employing the properties of the Farey
sequence in number theory, we obtain a closed form optimal
precoder so that the full diversity as well as maximum coding
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Fig. 1. A single relay system

gain can be achieved if square QAM signals are transmitted.

2. SYSTEMMODEL

A diagram of a single relay system is shown in Fig 1. The
relay node R assists the transmission from the source node S
to the destination nodeD. The relay operates in a half-duplex
mode by either transmitting or receiving signals, but not doing
both at the same time. All nodes in the system are equipped
with one antenna. The channel gain from the source node
to the destination is denoted by hsd whereas those from the
source node to the relay node and from the relay node to the
destination are denoted by hsr and hrd respectively. We con-
sider a symmetric relay network in which all channel gains are
assumed to be independent and identically distributed (IID)
circularly Gaussian with zero mean and unit variance, and
they do not change within the period of observation. The des-
tination has the full channel knowledge and the source knows
the second order statistics. The information bearing symbols
are equally probable from a squareM -ray-QAM constellation
set S and are processed by a precoder before being transmit-
ted. The transmission is carried out by blocks. We con ne
ourselves to blocks of length 2 since the optimal precoder
design which are based on the criterion of maximum coding
gain is very complicated for longer data block length. In the
1st time-slot, the source node transmits the rst data sym-
bol to both the destination and the relay node, and in the 2nd
time-slot, it sends the second data symbol only to the destina-
tion while the relay ampli es and forwards what it received
in the 1st time-slot to the destination. We denote the orig-
inal information symbol vector by s = [s(1) s(2)]T with
s(t), t = 1, 2 being the information symbol at the t-th time
slot. We also assume that the symbols satisfy E[ssH ] = I2

where I2 is an identity matrix of size 2. The data block is
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then processed by a precoder F such that

x = [x(1) x(2)]T = F [s(1) s(2)]T (1)

The received symbols at the destination can be written as,

r =
√

EpHx + n (2)

where Ep is the average power for transmitting a symbol at
each node, andH is the channel matrix

H =
[

hsd 0
bhsrhrd hsd

]
(3)

with b being the ampli cation coef cient at the relay node,
and n is the zero-mean circularly Gaussian noise vector at
the destination whose covariance matrix is σ2Σ with σ2 be-
ing the noise power and Σ =

[
1 0
0 (1 + b2|hrd|2)

]
. We

assume that the relay node has knowledge of the second or-
der statistics of channel gain hsr between the source node
to the relay node and the ampli cation coef cient satis es
b =

√
Ep/(Ep + σ2) [10]. For convenience in analysis, we

rewrite Hx in Eq. (2) as Hx = Xh, where X is the signal
matrix and h is the equivalent channel vector given below

X =
[

x(1) 0
x(2) x(1)

]
and h =

[
hsd

bhsrhrd

]
(4)

3. PAIR-WISE ERROR PROBABILITY

Suppose a maximum likelihood (ML) detector is applied to
the relay system described in Eq. (2). For a given channel
realization and a symbol block s ∈ S2, the pairwise error
probability is de ned as the probability of deciding in favor
of s′ �= s, s′ ∈ S2, and is given by

Pe(s → s′|h) = Q
(d(s, s′)

2

)
(5)

where function Q(x) = 1
π

∫ π
2

0
exp

( − x2

2 sin2 θ

)
dθ [11], and

d(s, s′) is the Euclidean distance between s and s′ at the ML
detector

d2(s, s′) =
Ep
σ2

(s − s′)HFHHHΣ−1HF(s − s′)

= ρ eHFHHHΣ−1HF e (6)

with ρ = Ep/σ2 being the signal-to-noise ratio (SNR) and
e � (s − s′) the error vector. Writing u = [u(1) u(2)]T �
F e = F(s − s′) = x − x′, then, we can re-write Eq. (6) as

d2(s, s′) = ρ hHUHΣ−1U h (7)

whereU is the error matrix after precoding such that

U =
[

u(1) 0
u(2) u(1)

]
= X − X′ (8)

with u(i) = x(i)−x′(i), i = 1, 2, andX andX′ as de ned in
Eq. (4). From Eqs. (5) to (7), the average PEP for the system
in Eq. (2) can be expressed as

Pe(s → s′) = Eh

[
Q

(d(s, s′)
2

)]

=
1
π

∫ π
2

0

Eh

[
exp

(
− ρ

hHUHΣ−1Uh
8 sin2 θ

)]
dθ (9)

For the relay system with a data block length of 2P, P ≥ 1,
an asymptotic expression for the PEP is given by Theorem 1
in [12]. For the particular case of data block length of 2, i.e.,
P = 1, a more accurate expression can be obtained by ex-
tracting one more dominant term. Here, we state the result as
a corollary:

Corollary 1 If, in Eq. (8), |u(1)| �= 0 then, at high SNR, an
asymptotic average PEP of the AF single relay system is

Pe(s → s′) = C1ρ
−2 ln ρ + C2ρ

−2 + O
( 1
|u(1)|4 ρ−3

)

where C1 = 12
|u(1)|4 , C2 = 12

|u(1)|4
(
4 ln 2 + 5

12 − γ −
2 ln

( ||u||
|u(1)|

))
and γ is the Euler constant. The terms G =

1
12 |u(1)|4 and (ρ−2 ln ρ) are the corresponding coding gain
and (full) diversity gain function, respectively. �
Comparing Corollary 1 with the asymptotic PEP for a conven-
tional multiple input multiple output (MIMO) system [13],
the following observations are noted:

• The diversity gain for the AF single relay system has
an extra factor of the logarithm of SNR. This is because
the channel matrix contains a term of the product of two
independent channel gains which, unlike in the case for
a MIMO system, is no longer IID Gaussian.

• Similar to the design of space time block codes for a
MIMO system, a precoder for the AF system can be
designed based on the following two criteria.
1. Rank criterion: In order to achieve the full di-
versity gain function (ρ−2 ln ρ) derived in Corol-
lary 1, the denominator of C1 must be non-zero;
i.e., |u(1)|4 �= 0.

2. Coding gain criterion: In order to obtain maxi-
mum advantage of the coding gain, the minimum
of coding gain taken all over non-zero error vec-
tors, i.e., e �= 0 must be maximized.

An ef cient method has been proposed [12] for the design
of a full diversity precoder using the rank criterion so that
the suf cient condition of |u(1)|4 �= 0 is ensured. On the
other hand, the issue of precoder design achieving maximum
coding gain will be addressed in the next section.

4. OPTIMAL PRECODER DESIGN

For a data block length of 2, we seek an optimum precoder
matrix F base on the coding gain criterion. Since we desire
that the ergodic channel capacity remains unchanged after the
transmitted symbols are precoded, we con ne our consider-
ation to orthonormal precoders. i.e., FFH = I. In the fol-
lowing, we design F such that the minimum coding gain is
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maximized by exploiting the properties of the Farey sequence
whose de nition is given below [14].

De nition 1 The Farey sequence Fn for any positive integer
n is the set of irreducible rational numbers p

q arranged in
increasing order, where 0 ≤ p ≤ q ≤ n and p and q have no
common factors. �
For example, when n = 4, F4 =

{
0
1 , 1

4 , 1
3 , 1

2 , 2
3 , 3

4 , 4
4

}
.

The Farey sequence Fn has the following interesting prop-
erty [14]:

Lemma 1 If pk

qk
and pk+1

qk+1
are consecutive terms in Fn,

then,pk+1qk − pkqk+1 = 1, and qk + qk+1 ≥ n + 1 �
For our design of the optimal coding gain precoder, we intro-
duce another property of the Farey sequence, whose proof is
omitted here:

Lemma 2 If pk

qk
and pk+1

qk+1
are consecutive terms in Fn, and

fk(θ) = (−pk cos θ + qk sin θ)2, then, fk(θ) is an increasing
function and fk+1(θ) is a decreasing function of θ for θ ∈
[tan−1(pk/qk), tan−1(pk+1/qk+1)]. �
Consider a square constellation of M -ary QAM signals hav-
ing its m-th member given by sm = amR + jamI ; m =
1, · · · ,M , where amR, amI ∈ {±1, ±3, · · · , ±(

√
M−1)}.

Let the difference between two of these members be repre-
sented by ε = εR + jεI where εR, εI are even integers such
that −2m0 ≤ εR, εI ≤ 2m0 with m0 =

√
M − 1. Thus,

the error vector in Eq. (6) is composed of the error quantities
at two different time slots such that e = [e(1) e(2)]T ∈ S2

d

with Sd = {εR +jεI}. Now, let a 2×2 orthonormal precoder
matrix F be given by

F =
[

cos θ sin θ
− sin θ cos θ

]
. (10)

We can re-write the coding gain in Corollary 1 as
G =

|u(1)|4
12

=
1
12

|e(1) cos θ + e(2) sin θ|4 (11)

To nd an optimal F satisfying the coding gain criterion, i.e.,
maxF mine �=0 G, we set the following problem:
Let J(e, θ) = |e(1) cos θ + e(2) sin θ|2. Find a θop such

that
θop = arg max

θ∈[0, 2π]
min

e∈S2
d,e �=0

J(e, θ) (12)

A solution to this problem is provided by the following theo-
rem:

Theorem 1 For the problem in Eq. (12), we have
θop = tan−1(1/

√
M) (13a)

Jop = max
θ∈[0, 2π]

min
e∈S2

d, e �=0
J(e, θ) = 4/(1 + M) (13b)

The corresponding optimal coding gain is

Gop =
1
12

(
4

1 + M

)2

(14)

Note:- By choosing θop as in Eq. (13a), the rank criterion that
|u(1)|4 �= 0, ∀ e �= 0 is automatically satis ed.

To prove Theorem 1, we rst show that the feasible set θ ∈
[0, 2π] in Eq. (12) can be reduced to θ ∈ [0, π

4 ] by letting
Z = maxθ∈[0,2π] mine∈S2

d, e �=0 J(e, θ). We notice that

Z =max{ max
θ∈[ �π

2 ,
(�+1)π

2 ]

min
e∈S2

d,e �=0
J(e, θ)}, � = 0, · · · , 3

On the other hand, we note that for e ∈ S2
d , e �= 0,

|e(1) cos θ̄ + e(2) sin θ̄|2
∣∣∣
θ̄∈[

(�+1)π
2 ,

(�+2)π
2 ]

= | − e(1) sin θ + e(2) cos θ|2
∣∣∣
θ∈[ �π

2 ,
(�+1)π

2 ]
(15)

Since both [e(1) e(2)]T and [−e(1) e(2)]T cover S2
d , there-

fore, for � = 0, · · · , 3, we have
max

θ∈[
(�+1)π

2 ,
(�+2)π

2 ]

min
e∈S2

d

e �=0

J(e, θ) = max
θ∈[ �π

2 ,
(�+1)π

2 ]

min
e∈S2

d

e �=0

J(e, θ).

Hence we can obtain Z = maxθ∈[0, π
2 ] mine∈S2

d,e �=0 J(e, θ).
Using the same argument, the feasible set θ ∈ [0, π

2 ] can be
further reduced to θ ∈ [0, π

4 ]. Now, to prove Theorem 1, we
take the following two steps:

• Step 1: Show that Jop in Eq. (13b) is the upper bound
of Z, i.e., Z = maxθ∈[0, π

4 ] mine∈S2
d,e �=0 J(e, θ) ≤

Jop. We segment [0, π
4 ] into K − 1 non-overlapping

sub-intervals, i.e., [0, π
4 ] = ∪K−1

k=1 Υk, where Υk =
[tan−1 pk

qk
, tan−1 pk+1

qk+1
], with {pk

qk
} being the Farey se-

quence Fm0 such that 0
1 = p1

q1
< p2

q2
< · · · < pK

qK
=

m0
m0

= 1, and K being the total number of elements
in Fm0 . The properties in Lemma 1 and Lemma 2 are
then used to prove Step 1.

• Step 2: Show that Jop is also a lower bound of Z, i.e.,
Z = maxθ∈[0, π

4 ] mine∈S2
d,e �=0 J(e, θ) ≥ Jop. A lower

bound of Z is Z ≥ 1
M+1 |

√
Me(1) + e(2)|2. Since

the minimum value of non-zero |e(i)| for i = 1, 2 is 2,
Step 2 holds.

5. NUMERICAL EXPERIMENTS
To demonstrate the performance of the optimal rotation ma-
trix, we evaluate the bit error rate (BER) by computer sim-
ulations. The transmitted signals, the channel gains, and the
noise are all of the forms as described in Section 2. At the
destination, the data is received by a maximum likelihood de-
tector. We compare the BER of the relay system: 1) with
F = I, i.e., without a precoder; 2) with a precoder designed
for the rank criterion [12]; and 3) with the optimal precoder
given in Theorem 1 in the previous Section. Fig. 2 shows the
comparison of the performance when the transmitted signals
are from a 4-QAM constellation. As can be observed, at BER
of 10−4, the system with optimal coding gain precoder is 8dB
and 2dB lower in SNR than the systems with no precoder and
with the precoder designed for the rank criterion respectively.
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Fig. 2. Performance Comparison for 4-QAM Signals
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Fig. 3. Performance Comparison for 16-QAM Signals

Fig. 3 shows similar comparison of the BERs when the trans-
mitted signals are from a 16-QAM constellation. Again, the
maximum coding gain precoder is superior in performance
not only to the system with no precoder but also to the sys-
tem with a precoder designed for rank criterion. In this case,
at BER of 10−4, its performance is about 4dB better than the
system without a precoder and is about 1.5dB better than the
system with a precoder designed for the rank criterion.

6. CONCLUSION

In this paper, we have analyzed the pairwise error perfor-
mance of the AF half-duplex single relay transmission system
with transmitting data blocks of length 2. By extracting the
two dominant terms in the pairwise error probability, a more
accurate expression has been arrived at from which the coding
gain and maximum diversity have been identi ed. From these
results, employing some interesting properties of the Farey se-
quence in number theory, a closed form optimal precoder has
been designed to achieve the optimal coding gain for square
QAM signals. It is also noted that such an optimum precoder
satis es full diversity as well. Simulation results show that the
proposed design signi cantly improves the BER performance
of the relay system.
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