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ABSTRACT

We study the transmit strategies in a MIMO bidirectional re-

laying scenario with individual power constraints. In two

phases a half-duplex relay node decodes-and-forwards the

signals of two nodes. Each node has multiple antennas. We

deduce the transmit strategy in the first phase from the gen-

eral Gaussian MIMO-MAC. Since each node knows a pri-

ori the interference of its own message in the second phase

interference-free reception is achieved. Therefore, the op-

timal relay transmit strategy is given by two point-to-point

water-filling solutions which are coupled by the relay power

distribution. In the large SNR, the sum of any bidirectional

rate tuple on the boundary of the rate region is asymptotically

proportional with the minimum spatial degree of both MIMO

channels.

Index Terms— Mobile communication, Bidirectional re-

laying, Decode-and-forward, MIMO system, Optimal trans-

mit strategy

1. INTRODUCTION

Future cellular and ad hoc wireless systems should offer con-

nectivity almost everywhere, which is great engineering chal-

lenge in scenarios where the direct link does not have the de-

sired quality, e.g. due to shadowing or distance. Therefore,

recently there has been an increasing interest in cooperative

protocols for wireless systems where one or more relay nodes

realize range extension by multi-hop communication. On the

other hand, already in 1961 Shannon introduced the problem

of the two-way communication channel, which is nowadays

regarded as the first network information theory problem [1].

We consider a scenario where bidirectional communica-

tion between two nodes is established by one half-duplex re-

lay node, i.e. the relay cannot transmit or receive at the same

time using the same frequency. At the latest after [2] it is well

known that MIMO communication systems have the ability to

reach higher transmission rates than single-antenna scenarios.

Therefore, in this work we extend a spectral efficient protocol,

which was first proposed in [3], to the multi-antenna process-

ing. In [4], we studied the combinatorial properties of the

achievable rate region for nodes with one antenna element.

Unfortunately, due to the complicated structure of the rate re-

gions in the MIMO case the combinatoric cannot be given in

closed form. Nevertheless, with the results presented here it

is possible to characterize the optimal transmit strategies for

any rate tuple using standard methods for convex optimiza-

tion. Furthermore, we will see that the asymptotic behavior

in the large SNR regime is determined by the minimum spa-

tial degree of both MIMO channels.

In [5], an iterative water-filling algorithm is proposed

which finds an optimal input distribution for the MIMO-MAC

under the sum-rate criterion and individual power constraints.

[6] is a helpful study on the optimal transmit covariance ma-

trices for any rate tuple on the boundary of the MIMO-MAC

region. Another way to realize spatial multiplexing gains in

MIMO relay networks is shown in [7], where the equivalent

MIMO channel orthogonalize in the large relay node limit by

simple matched-filtering at the relay nodes.

In the following we present the optimal transmit strate-

gies for the bidirectional MIMO relaying, which are derived

from the Gaussian MIMO-MAC and point-to-point Gaussian

MIMO channel.

Notation: Bold and calligraphic letters denote matrices

or vectors and sets respectively; �+ specifies the set of non-

negative real numbers; || · ||1 denotes the L1 vector norm; any

log is the logarithm of basis two.

2. ACHIEVABLE RATE REGION

We assume a perfectly synchronized three node network,

where bidirectional communication is realized by a decode-

and-forward half duplex relay node with NR antennas. Ac-

cordingly, node 1 and 2 are equipped with N1 and N2 anten-

nas respectively. The communication is performed slot-wise,

while one time-slot is divided in two phases, namely the mul-
tiple access (MAC) and broadcast (BC) phase of equal du-

ration. The separation in two phases with none cooperative

transmitters makes the problem tractable but need not be op-

timal.

Let H1 ∈ �NR×N1 and H2 ∈ �NR×N2 denote the

discrete-time reciprocal flat-fading MIMO channels between

the relay node and node 1 and two respectively. The rank

r1 = rank[H1] ≤ min{N1, NR} and r2 = rank[H2] ≤
min{NR, N2} denote the number of spatial degree of the

channels, i.e. each non-zero eigenmode of the channel can
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support a data stream. We assume perfect channel knowl-

edge at any node. The transmit powers of each node are

restricted by peak power constraints P̂k, k ∈ {1, 2, R} re-

spectively. Furthermore, the reception at each antenna of ev-

ery node is distorted by independent additive white Gaus-

sian noise n1,n2, and nR with equal covariance matrices

σ2I = ρ−1I . A generalization to more general noise co-

variance matrices is straight forward.

MAC phase: In the first phase, node 1 and 2 transmit their

information for each other to the relay node. The encoding

and decoding is performed as in the classical discrete-time

Gaussian MIMO-MAC channel. The messages at node 1 and

2 are encoded with rate R−→
1R

and R−→
2R

and mapped onto trans-

mit signals x1 ∈ �N1 and x2 ∈ �N2 with transmit covari-

ance matrices Qk = �{xkxH
k } with tr[Qk] = Pk ≤ P̂k

for k = 1, 2 respectively. For a given time-instant, the re-

lay receives an additive noise distorted superposition of the

transmitted signals

yR = H1x1 + H2x2 + nR.

If the rate tuple RMAC = [R−→
1R

, R−→
2R

] of node 1 and 2 is

within the MIMO-MAC rate region

RMAC =
{

[R−→
1R

, R−→
2R

] ∈ �2
+ : R−→

1R
≤ R̂−→

1R
,

R−→
2R
≤ R̂−→

2R
, R−→

1R
+ R−→

2R
≤ R̂Σ)

}

with well-known MIMO-MAC boundaries

R̂−→
1R

= log det
[
INR + ρH1Q1H

H
1

]
, (1a)

R̂−→
2R

= log det
[
INR + ρH2Q2H

H
2

]
, (1b)

R̂Σ = log det
[
INR + ρH1Q1H

H
1 + ρH2Q2H

H
2

]
(1c)

it is assumed that the relay node can perfectly decode the

transmitted messages from node 1 and 2.

BC phase: In the second phase, the relay broadcasts the

previously received messages. Since each node knows its

own message the relay node encode the independent mes-

sages from node 1 and 2 like in a classical Gaussian MIMO

point-to-point link with rate R−→
R2

and rate R−→
R1

respectively. It

therefore maps the message from node 1 onto the transmit sig-

nal w1 with transmit covariance matrix QT
R,1 = �{w1w

H
1 }

and the message from node 2 onto the transmit signal w2 with

transmit covariance matrix QT
R,2 = �{w1w

H
1 }. Then the re-

lay transmits the superposition of both, i.e. xR = w1 + w2.

Finally, let β ∈ [0, 1] denote the relay power distribution with

tr[QR,1] ≤ βP̂R and tr[QR,2] ≤ (1− β)P̂R.

We assume reciprocal channels H1 and H2. Therefore,

the received signal at node 1 and 2 are given by

yk = HT
k xR + nk, k = 1, 2.

Each node receives its own message as interference. Before

decoding the unknown message, each node subtracts the in-

terference caused by its own message, i.e. effectively, we

achieve interference-free reception. Accordingly, we assume

error-free decoding if the rate tuple RBC = [R−→
R2

, R−→
R1

] is

within the following MIMO-BC rate region of the BC phase

RBC =
{

[R−→
R2

, R−→
R1

] ∈ �2
+ : R−→

R2
≤ R̂−→

R2
(β),

R−→
R1
≤ R̂−→

R1
(β), β ∈ [0, 1]

}

with the parametrized boundary

R̂−→
R2

(β) = log det
[
IN2 + ρHH

2 QR,1H2

]
(2a)

R̂−→
R1

(β) = log det
[
IN1 + ρHH

1 QR,2H1

]
(2b)

We assume that no information will be stored at the re-

lay node. This means that any information received in the

MAC phase has to be forwarded in the BC phase immedi-

ately. Therefore, the bidirectional achievable rates for equal

time division between the MAC and BC phase are given by

R1 = min
{
R−→

1R
, R−→

R2

}
/2, (3a)

R2 = min
{
R−→

2R
, R−→

R1

}
/2 (3b)

with [R−→
1R

, R−→
2R

] ∈ RMAC and [R−→
R2

, R−→
R1

] ∈ RBC, while

R1 and R2 denote the unidirectional rates using the relay for

communication between node 1 and 2 and vice versa respec-

tively.

In accordance, the achievable rate region of the bidirec-

tional relaying scheme is given by the intersection of the

scaled rate regions of the MAC and BC phase.

RBIR = 1
2 (RMAC ∩RBC) . (4)

In the next section, we characterize the optimal transmit

strategy for any rate tuple [R1, R2] ∈ RBIR, i.e. the optimal

power allocation and transmit covariance matrix.

3. OPTIMAL TRANSMIT STRATEGIES

Due to the intersection and the difficult characterization of

the MIMO-MAC boundary the boundary of the MIMO-BIR

can not be characterized in closed form as it is possible in the

SISO case [4]. The optimal transmit strategies in both phases

depend on the desired rate pair R ∈ RBIR. Since any rate

pair in the interior can be achieved by time-sharing the most

interesting operating rate pairs are those on the boundary of

the rate regionsRBC andRMAC. In the following we present

the optimal transmit strategies, which are adapted from the

MIMO-MAC and point-to-point MIMO channel.

3.1. MIMO-BC

For any relay power distribution factor β the maximal achiev-

able rates R̂−→
R2

(β) and R̂−→
R1

(β) are given by (2a) and (2b) re-

spectively. Thus, for a fixed β the optimal transmit strategies

QR,1 and QR,2 are decoupled and follow from the classical
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water-filling solution for the point-to-point MIMO channel,

e.g. [2]. In the following, we briefly characterize the optimal

transmit covariance matrices.

Let H2H
H
2 = V 2Σ2V

H
2 be the eigenvalue decompo-

sition with Σ2 = diag1≤i≤NR
{λ2,i} and λ2,1 ≥ · · · ≥

λ2,NR ≥ 0 sorted in decreasing order. Then the optimal trans-

mit covariance matrix QR,1 = V H
2 diag1≤i≤NR

{ξi}V H
2

with ξi = max{ν − 1/λ2,i, 0} and water-level condition

βP̂R/σ2 =
∑NR

i=1 ξi. For this procedure, we introduce the

short notation QR,1 = Q(HH
2 , βP̂R/σ2). With this, the

optimal transmit covariance matrix QR,2 = Q(HH
1 , (1 −

β)P̂R/σ2) follows accordingly.

From the water-filling solution we can also specify the

beamforming optimality range, where only ξ1 �= 0 and ξi =
0 ∀i ≥ 2. This is case for (2a) if βP̂R/σ2 ≤ (1/λ2,2 −
1/λ2,1). More generally, it is optimal to use K ≤ r2 channel

eigenmodes if we have

βP̂R

σ2
≤

K∑
k=1

( 1
λ2,K

− 1
λ2,k

)
.

Obviously, with increasing transmit power more channel

modes are used until every eigenmode greater than zero is

used (high SNR case). Similar threshold values can be for-

mulated for any water-filling solution.

3.2. MIMO-MAC

In the following we will characterize the boundary of the

MIMO-MAC region. Some rate pairs can only be reached

if time-sharing is applied, others require a certain decoding

order. Therefore, let π1 denote the decoding order where the

message from node 2 is decoded first and therefore sees the

signal from node 1 as additional interference. After decod-

ing the message from node 2 its interference is canceled and

interference-free decoding of the message from node 1 is pos-

sible (successive interference cancellation). Accordingly, the

achievable rates are given by

Rπ1−→
1R

= 1
2 log det

[
INR + ρH1Q1H

H
1

]
(5a)

Rπ1−→
2R

= 1
2 log

det
[
INR + ρH1Q1H

H
1 + ρH2Q2H

H
2

]

det
[
INR + ρH1Q1H

H
1

] . (5b)

This allows us to derive the first characteristic rate pair,

which we denote E1 = [RE1
1 , RE1

2 ]. From (5a) we see that

the maximal unidirectional rate RE1
1 = R̂−→

1R
/2 is achieved

if we choose Q1 according to the classical water-filling so-

lution Q(H1, P̂1/σ2). The rate remains unchanged for any

transmit strategy Q2. Then, RE1
2 follows from the op-

timal transmit covariance matrix Q2 under the constraint

RE1
1 = R̂−→

1R
/2. The optimal transmit strategy is given by

the water-filling solution Q(H̃2, P̂1/σ2) with an equivalent

channel H̃2 which satisfies the decomposition H̃
H

2 H̃2 =

HH
2 (INR + ρH1Q1H

H
1 )−1H2 (Cholesky). With this, we

are able to define the first section E1 = {[R̂−→
1R

/2, R−→
2R

] : 0 ≤
R−→

2R
≤ RE1

2 } of the boundary ofRMAC/2.

Accordingly, let π2 denote the decoding order where the

message from node 1 is decoded first. By interchanging the

indices 1 and 2 in (5a) and (5b) and following the same cal-

culation we get the rate pair E2 = [RE2
1 , RE2

2 ] with RE2
2 =

R̂−→
2R

/2 and accordingly the section E2 = {[R−→
1R

, R̂−→
2R

/2] :
0 ≤ R−→

1R
≤ RE2

1 } of the boundary ofRMAC/2.

Since the boundary of a convex set can be characterized

by the weighted rate sum maxima for the next sections on the

boundary we consider optimization problem [5], [6]

RMAC(q) = arg max
R∈RMAC

q1R−→1R + q2R−→2R. (6)

In [6] it is shown that in the case q1 ≥ q2 the decoding

order π1 is optimal. In accordance, if q1 ≤ q2 the decod-

ing order π2 is optimal. With the optimal decoding order the

objective is a sum of concave functions and therefore the op-

timization problem (6) is convex.

In the following we will study the case q1 ≥ q2. The

Lagrangian function of the optimization problem is given by

L(Q1,Q2,Ψ1,Ψ2, μ1, μ2) = −q1R
π1−→
1R
− q2R

π1−→
2R

−
2∑

k=1

μk

(
Pk − tr[Qk]

)
−

2∑
k=1

tr[QkΨk].

Therefore, the optimal transmit strategies Q1 and Q2 for

rate pair RMAC(q) are uniquely characterized by the Karush-

Kuhn-Tucker (KKT) conditions, which we present in the fol-

lowing for the case of q1 ≥ q2

μ1I1 + Ψ1 = HH
1

(
(q2 − q1)

[
σ2INR + H1Q1H

H
1

]−1

−q2

[
σ2INR+H1Q1H

H
1 + H2Q2H

H
2

]−1)
H1 (7a)

μ2I2 + Ψ2 =

−q2H
H
2

(
σ2INR+H1Q1H

H
1 + H2Q2H

H
2

)−1
H2

(7b)

tr[QkΨk] = 0, μk(Pk − tr[Qk]) = 0, k = 1, 2 (7c)

Ψk � 0Nk
, μk ≥ 0 k = 1, 2 (7d)

Qk � 0Nk
, Pk ≥ tr[Qk] k = 1, 2 (7e)

with complementary slackness, dual, and primal conditions

(7c),(7d), and (7e) respectively. Since the optimization prob-

lem is convex efficient algorithms like interior-point method

exist to calculate the optimal covariance matrices.

The previous discussion allows us to specify the set of rate

pairs on the boundary D1 = {RMAC(q) : q ∈ �2
+, q1 ≥ q2}

for q1 ≥ q2. Thereby, we denote by D1 the sum-rate maxi-

mum RMAC([1, 1]) ∈ D1. Accordingly, in the case q1 ≤ q2

the Lagrange function and KKT conditions follow by inter-

changing the indices 1 and 2. This gives us the next set of rate

pairs on the boundary D2 = {RMAC(q) : q ∈ �2
+, q1 ≤ q2}

and the sum-rate maximum D2 = RMAC([1, 1]) ∈ D2.
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Fig. 1. Rate Region MIMO-BIR with N1 = N2 = NR = 2

The last section T = {R : R = αD1 + (1− α)D2, α ∈
[0, 1]} is given by the connection between both sum-rate max-

ima and can be reached by time-sharing between the corre-

sponding strategies of D1 and D2 only. If one is interested in

sum-rate optimal rate pairs only one can also use an iterative

waterfilling algorithm presented in [5].

4. HIGH SNR BEHAVIOR

We can deduce the high SNR-behavior of the sum of any rate

pair RBIR on the boundary of the rate region RBIR from the

asymptotic behavior of the maximal achievable unidirectional

rates

R�
1 = min{R̂−→

1R
, R̂−→

R2
(1)}/2 (8a)

R�
2 = min{R̂−→

2R
, R̂−→

R1
(0)}/2 (8b)

using the following relation

min{R�
1, R

�
2} ≤ ||RBIR||1 ≤ R�

1 + R�
2. (9)

At high SNR, allocating equal amounts of power on the non-

zero eigenmodes is asymptotically optimal. Thus, at high

SNR we can approximate R̂−→
1R

and R̂−→
R2

(1) by

R̂−→
1R
≈∑r1

j=1 log
[
Pγ1

λ1,j

r1

]

R̂−→
R2

(1) ≈∑r2
j=1 log

[
PγR

λ2,j

r2

]

with γ1 = P̂1
Pσ2 and γR = P̂R

Pσ2 . This gives us a high SNR

approximation of the first unidirectional rate

R�
1 ≈ min{r1, r2} log[P ] + c1 (10)

with a finite constant c1. Accordingly, there exist a finite con-

stant c2 so that at high SNR R�
2 can be approximated by

R�
2 ≈ min{r1, r2} log[P ] + c2. (11)

In other words, at high SNR the unidirectional rates grow with

the minimum spatial degree of both channels, which is a rea-

sonable result since every message has to be transmitted via

both channels.

Furthermore, from (9) it follows that at high SNR the

growth of the sum of any rate pair on the boundary ofRBIR is

asymptotically proportional with minimum spatial degree of

both channels, i.e. min{r1, r2} log[P ].

5. CONCLUSION

MIMO specific difficulties make the processing of the exten-

sion of an efficient bidirectional relay communication proto-

col to the MIMO case more complex. In the MAC phase the

optimal transmit strategy follows form the general MIMO-

MAC channel. In the BC phase the optimal transmit strate-

gies are derived from two point-to-point MIMO links which

are only coupled by the distribution of the relay power.

In the high SNR, the sum of any rate pair on the boundary

of the achievable bidirectional rate region grows linearly with

the minimum of the spatial degrees of both MIMO channels.

Similar investigations regarding the cross-layer design or

relay selection as in the SISO case are straight forward but

are much more involved due to the difficult characterization

of the rate regions.
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