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ABSTRACT

This paper proves that second-order symbol-rate blind channel iden-
tification is feasible if the transmitted bit stream is encoded and the
channel estimator conveniently exploits the code redundancy. This
result is surprising because most error correcting codes do not alter
the symbols correlation. Despite this, it can be shown that second-
order methods can exploit the symbols fourth-order statistical infor-
mation, which contains part of the code redundant structure. An-
alytical and numerical results are presented for the BPSK (Binary
Phase Shift Keying) modulation and simple error-correcting block
codes. The extension to more sophisticated coding and modulation
schemes seems straightforward although computationally intensive.

Index Terms— Parameter estimation, channel coding

1. INTRODUCTION

In single antenna communication systems, second-order blind chan-
nel estimation requires to oversample the received cyclostationary
signal to have multiple symbol-rate versions of the channel impulse
response (CIR) [1]. In that case, classical subspace methods [1][2],
(cyclic) correlation matching methods [3], or a mixing of both ap-
proaches [4], can be used to obtain consistent CIR estimates under
mild identifiability constraints. Otherwise, if the signal is processed
at one sample per symbol, the general belief is that higher-order tech-
niques are needed to identify the channel. In this paper, it is proved
that second-order channel identification is still possible at one sam-
ple per symbol provided that the transmitted bit stream is coded us-
ing standard error control codes.

Although in most cases the encoder does not modify the correla-
tion of the transmitted symbols, it introduces statistical dependency
in the coded sequence that is manifested in the higher-order statistics
of the coded symbols. Apparently, second-order techniques could
not use this higher-order information. However, it was proved by the
authors in [5][6][7] that optimal second-order estimators can exploit
the symbols fourth-order statistical information.

Thus far, this information was found to be relevant in some mul-
tivariate estimation problems if the transmitted symbols had constant
modulus [8][9]. In this contribution, it is shown that the fourth-order
cumulants (kurtosis) of the transmitted symbols, which appear natu-
rally in the formulation of the optimal second-order estimator, pro-
vide sufficient information about the code redundancy to yield ac-
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curate CIR estimates without the need of oversampling the received
signal.

Finally, notice that the code redundancy is also exploited by
some iterative schemes in the literature based on the turbo principle
[10][11]. However, they are inherently higher-order methods per-
forming joint decoding and channel estimation.

2. SIGNAL MODEL

In this section, the proposed framework for channel estimation is
presented in detail. The symbol-rate samples at the matched filter
output are given by

y(n) =

L−1X
l=0

hlx(n− l) + w(n) (1)

where hl is l-th element of the complex-valued CIR, x(n) ∈ {−1, 1}
the sequence of transmitted uncorrelated coded BPSK symbols and
w(n) the zero-mean white Gaussian noise term of known variance

σ2w. For convenience, we consider that
PL−1
l=0 ‖hl‖2 = 1 and,

therefore, σ2w is the inverse of the signal-to-noise ratio (SNR) at the
matched filter output.

Let us consider that x(n) is the output of a given (N,K) block
code. In that case, x(n) is the concatenation of BPSK-modulated
codewords of length N . The binary version of these codewords is
computed using bitwise operations as follows:

x′ = s′ ·G (2)

where G is the code generating matrix and s′ is the block of the
K independent bits entering into the encoder. Notice that the prime
sign ( )′ is used to denote the binary representation of the associated
BPSK symbol, i.e.,

x = 1− 2x′

s = 1− 2s′. (3)

Although the considered encoder is linear in the Galois field, it
is performing a nonlinear transformation of the input data symbols.
For example, if we consider the following (6, 3) encoder

G =

2
4

1 0 0 1 1 0
0 1 0 0 1 1
0 0 1 1 0 1

3
5 , (4)

the codewords will be constructed as follows:

x =
ˆ
s1 s2 s3 s1s3 s1s2 s2s3

˜
, (5)
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where sn stands for the n-th element of vector s. Therefore, the
modulus-2 binary sum corresponds to the product of the associated
BPSK symbols. In the proposed example, the encoder is implicitly
introducing a quadratic transformation but, in general, the order of
the nonlinearity will be given by the maximum number of ones in
the columns ofG.

The channel estimator will process consecutive codewords of
length N samples, having the following expression:

y = Hx̃+w (6)

whereH is the matrix carrying out the CIR convolution and x̃ is the
column vector that contains the N + L − 1 BPSK symbols of the
current codeword (x) and the previous interfering codewords. For
instance, if the CIR has length L = 3 and the encoding in (4) is
considered, the content of matrixH would be

H =

2
666664

h2 h1 h0 0 0 0 0 0
0 h2 h1 h0 1 1 0 0
0 0 h2 h1 h0 0 0 0
0 0 0 h2 h1 h0 0 0
0 0 0 0 h2 h1 h0 0
0 0 0 0 0 h2 h1 h0

3
777775
, (7)

involvingL−1 = 2 interfering symbols from the previous codeword
(first two columns of H) and the next N = 6 symbols from the
current codeword.

The proposed estimator assumes word synchronization, mean-
ing that the beginning of the codewords is known. In addition, sym-
bol synchronization is assumed although it is actually optional be-
cause the sampling errors could be included into the CIR.

3. SECOND-ORDER CHANNEL ESTIMATION

The real and imaginary parts of the channel coefficients is stacked in
the parameter vectorΘ as follows

Θ =
ˆ �(h0) . . . �(hL−1) �(h1) . . . �(hL−1)

˜T
(8)

where the superscript T denotes transposition. Notice that the first
channel tap is assumed real-valued to overcome the inherent phase
ambiguity of second-order methods. The phase ambiguity could be
solved exploiting the non-circularity of the BPSK modulation [12].
However, this approach is out of the scope of this work.

The vector of parameters Θ can be estimated from the sample
covariance matrix

R̂ = yyH (9)

where the superscript H denotes transpose conjugate. Again, the
non-circular property is not studied in the paper and, thus, the im-
proper sample covariance matrix yyT is not considered for channel
estimation.

A closed-loop implementation is proposed for the channel esti-
mator allowing channel tracking in time-varying scenarios [13]. A
closed-loop scheme is composed of a discriminator (error detector)
and a loop filter. The discriminator is aimed to estimate the error be-

tween the actual CIR and the CIR estimate in the last iterate, say Θ̂.

After acquisition, in the steady-state, the estimation error e = Θ̂−Θ
has zero mean and its variance is determined by the noise equivalent
loop bandwidth [13].

The optimal sample covariance based discriminator, which min-
imizes its variance in the steady-state, was formulated in [5] and it is
particularized now for the CIR estimation problem:

ê = (DHQ−1D)−1DHQ−1
vec(R̂−R) (10)

with

R = E
n
R̂
o

= HHH + σ2wIN

D =
h
vec( ∂R

∂θ1
) . . . vec( ∂R

∂θ2L−1
)
i

Q = E
n
vec(R̂−R)vecH(R̂−R)

o

= R∗ ⊗R+ (H∗ ⊗H)K(H∗ ⊗H)H

where θn is the n-th entry in Θ, vec( ) denotes column-wise vec-
torization, ⊗ stands for the Kronecker product, IN is the N-by-N
identity matrix and K is the kurtosis matrix containing the fourth-
order cumulants of vector x̃:

K = E
n
vec(x̃x̃H − IN+L−1)vec

H(x̃x̃H − IN+L−1)
o

(11)

This matrix plays a prominent role in this contribution because
it supplies the whole fourth-order statistical information about the
received symbols that second-order estimators are able to exploit. It
was shown in [6][7] that second-order methods can be improved for
medium-to-high SNR by means of matrix K if and only if this ma-
trix has some eigenvalues equal to −1. This property was verified in
case of constant modulus alphabets in [5][6]. In addition, the main
conclusion of this paper is that the rank of the subspace ofK associ-
ated to the eigenvalue −1 increases in case of coded transmissions.
For example, focusing on the (6, 3) code in (4) and the channel ma-
trix in (7),K has 36 eigenvalues equal to -1 in the uncoded case and
44 in the coded case. This expansion allows reducing the estimator
variance at medium-to-high SNR.

MatrixK could be computed analytically from the higher-order
moments of the BPSK constellation if the encoder modular opera-
tions are expressed as products of the corresponding BPSK symbols,
as done in (5). However, it is recommended to evaluateK by means
of a short computer simulation taking into account that the elements
ofK take values in the set {−1, 0, 1}.

It can be shown that the channel is identifiable from the sample
covariance matrix if and only if the Jacobian matrix D has full col-
umn rank. Actually, the estimator variance is strongly related to the
condition number of matrix D. The condition number is defined as
the ratio between the largest and smallest singular value ofD and it
states how difficult is to separate the different CIR components.

Using the results in [5] and considering a first-order loop, the
channel estimator variance is given by

V AR =

L−1X
l=0

E‖ĥl − hl‖2 � 2NBnTr
“
(DHQ−1D)−1

”
(12)

where ĥl is the estimator of hl, Tr( ) is the trace operator and Bn
is the noise equivalent loop bandwidth normalized to the symbol pe-
riod. Simulations in next section have validated the correctness of
the last expression.

4. NUMERICAL RESULTS

In this section, the steady-state variance of the studied closed-loop
estimators is evaluated numerically averaging 500 independent real-
izations of the data symbols (BPSK), the noise and the channel im-
pulse response. The channel is modeled as a complex-valued zero-
mean Gaussian vector of exponentially decreasing variance, i.e.,

E
˘‖hl‖2

¯
= exp(−l/DS) (13)

where DS is the channel delay spread normalized to the symbol
interval. Recall that the phase of the first coefficient is set to 0 to

III  138



10 5 0 5 10 15 20 25 30 35 40
10

6

10
5

10
4

10
3

10
2

10
1

10
0

10
1

SNR(dB)

V
A

R
Channel Estimation Error Variance

Optimal (code info), L=4
Optimal (code info), L=2
Suboptimal (no code info)
GML

Fig. 1. Channel estimator variance as a function of the SNR for the
optimal (code info), suboptimal (no code info) and GML second-
order estimators. A constant power delay profile (DS � 1) with
L = 4 taps is simulated. The loop bandwidth is set to 1.2 × 10−3

and the (6, 3) coding in (4) is considered.

overcome the phase ambiguity of the sample covariance matrix (9).
Notice also that the 500 channel realizations used in the variance
calculus correspond to ”well-behaved” channel responses having a
condition number lower than 10.

Three channel estimators are simulated:

- Optimal estimator (code info) : the optimal sample covariance
based estimator, which exploits the coding fourth-order information
by means of matrixK (11).

- Suboptimal estimator (no code info) : the quadratic estimator
proposed in [5] that only exploits the constant modulus property of
the symbols. In this case, K is obtained from (11) assuming inde-
pendent BPSK symbols.

- GML estimator : the quadratic Gaussian maximum likelihood es-
timator derived assuming Gaussian symbols [5], i.e.,K = 0.

In order to illustrate the main points of this work, four simula-
tions have been carried out:

- Figure 1 : the performance of the GML estimator is dramat-
ically degraded at high SNR due to the so-called self-noise caused
by the random BPSK symbols. The reason is that the symbol-rate
channel matrixH is not invertible since it has more inputs than out-
puts. Consequently, oversampling –or another form of diversity– is
required to cancel out the self-noise floor at high SNR.

On the other hand, in case of coded transmissions, the redun-
dancy of the error-correcting code is partially reflected in the kur-
tosis matrix K (11). Effectively, if this information is considered,
the optimal estimator outperforms the subptimal solution derived as-
suming independent BPSK symbols.

- Figure 2 : the optimal and suboptimal second-order estimator
is evaluated for L = 4 and different values of the delay spread. Two
asymptotic scenarios are considered: almost multiplicative channel
(DS 	 1) and almost constant power delay profile (DS � 1). It is
shown that the estimator performance is lower and upper bounded by
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Fig. 2. Channel estimator variance as a function of the SNR for
different values of the delay spread (DS). The CIR length is set to
L = 4 and the loop bandwidth to 1.2 × 10−3. The (6, 3) coding in
(4) is considered.

these two asymptotic cases. When DS goes to zero, the estimator
variance is inversely proportional to the SNR (Fig. 1). For inter-
mediate values of DS, the estimator variance decays with a lower
slope.

Notice that, if the CIR length is L = 4, the suboptimal esti-
mator (no code info) exhibits a variance floor at high SNR that is
independent of the value of DS.

- Figure 3 : the optimal and suboptimal second-order estimator
is evaluated for different values of L, assuming an almost constant
power delay profile (DS � 1). In the figure, it is observed how
the redundancy of the selected code (4) becomes insufficient to mit-
igate the self-noise as the number of taps increases. In this case,
the improvement with respect to the suboptimal second-order esti-
mator vanishes. It seems that self-noise is avoided if and only if the
number of independent data symbols included in the observation is
not greater thanN (observation size). For the simulated (6, 3) code,
L = 4 becomes this limit because, in that case, only 2K = 6 ≤ N
out of the N + L− 1 = 9 involved symbols are independent.

- Figure 4 : the optimal and suboptimal second-order estimator
is evaluated for different values of L (CIR duration) and the well-
known (7, 4) Hamming code:

G =

2
64

1 0 0 0 1 0 1
0 1 0 0 1 1 1
0 0 1 0 1 1 0
0 0 0 1 0 1 1

3
75 . (14)

Using this coding it is possible to reduce the variance achievable
with the (6, 3) code at high SNR. Although both codings introduce
the same number of parity bits and the memory of the closed-loop
estimator is frozen to the same value, the second encoding reduces
the self-noise variance at high SNR, mainly for the longest channel
response (L = 6).
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Fig. 3. Channel estimator variance as a function of the SNR for
different values of the CIR duration (L). A constant power delay
profile is simulated (DS � 1). The loop bandwidth is set to 1.2 ×
10−3 and the code is the (6, 3) block code in (4).

5. CONCLUSION

In this paper, it is proved that second-order blind channel estima-
tors are able to use the redundancy of error-control codes to mitigate
the self-noise variance. The code redundant structure is manifested
in the fourth-order cumulants (kurtosis) of the transmitted symbols.
This matrix appears naturally in the formulation of optimal second-
order estimators and also provides information on the discrete nature
of the transmitted symbols. It is shown that, using this fourth-order
information, it is possible to obtain self-noise free channel estimates
at one sample for symbol. This result is relevant because all the
second-order techniques in the literature work with more than one
sample per symbol.
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