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ABSTRACT

This paper considers a pilot-aided/data-aided Kalman channel es-
timator for OFDM in fast time-varying (TV) channels. Capitalizing
on a basis expansion model (BEM) and on a frequency-domain
estimation philosophy, the OFDM system is designed to periodi-
cally switch between a pilot-aided and a data-aided mode in order to
reduce the rate penalty introduced by the training pilots. The sug-
gested philosophy is effective in tracking the channel changes in the
data-aided mode with a negligible channel mean squared error
(MSE) penalty, if the Kalman filter prediction capability is coupled
with an iterative data-aided estimation that is equipped by an op-
portune selection of the detected data. Appropriate data selection
metrics for LMMSE and DFE equalizers are also provided, and the
impact of the proposed channel estimation on the ultimate BER
performance of each equalizer is investigated by simulations.

Index Terms - OFDM, doubly-selective channels, channel estima-
tion, channel tracking, Kalman filter

1. INTRODUCTION

Wireless scenarios characterized by high-mobility destroy the sub-
carriers’ orthogonality of OFDM systems, thus introducing inter-
carrier interference (ICI) that significantly degrades the perform-
ance of single-tap equalizers, which are classically employed in
OFDM systems [1][2]. Thus, more complex equalizers are required
for time-varying (TV) channels, such as those recently proposed in
[31, [4], [5] and references therein. Obviously, TV channel estima-
tion plays a crucial role for the performance of these equalizers,
which require the knowledge of the channel variation within each
OFDM block.

Recently, in [6] the authors proposed a Kalman-based channel es-
timator that capitalizes on a basis expansion model (BEM) [7] for
the channel, and on a frequency-domain pilot-aided training. Spe-
cifically, the BEM basis functions capture the channel variation
within each OFDM block, and the Kalman adaptively estimates the
BEM coefficients from one OFDM block to another, thus signifi-
cantly reducing the Kalman filter complexity. However the fre-
quency-domain training, which reserves to pilots some subcarriers
of each OFDM block, introduces a rate penalty that increases with
the number of unknowns in the estimation problem (i.e. with the
number of channel paths and the maximum Doppler spread [8]). In
order to reduce the rate penalty induced by training, we propose an
OFDM system that switches periodically between a fre-
quency-domain pilot symbol assisted modulation (PSAM) mode
and a virtual PSAM (V-PSAM). In the V-PSAM mode, all the
OFDM subcarriers convey only data, which, after a first coarse
equalization and detection, are used to refine the Kalman-filter
channel estimation in an iterative fashion, thereby improving the
overall BER. In order to make the channel estimation refinements
effective in the V-PSAM mode, it is highly desirable that the virtual
pilots correspond to data detected without any error. Thus, similarly
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to layer sorting techniques for nulling and cancelling (NC)-MIMO
detection [9], we propose virtual pilot selection strategies, by ex-
ploiting metrics that are aimed to maximize the a posteriori prob-
ability of correct data detection. We will show the great benefit
provided by opportune virtual pilot selection strategies, and that the
convenient selection metric depends on the TV equalization scheme.
We will investigate by simulations the channel estimation MSE and
the ultimate impact of the proposed data-aided estimation on the
BER of TV OFDM systems that are equipped with block LMMSE
and block DFE (BDFE) equalizers [5].

2. CHANNEL BASIS EXPANSION MODEL
A TV discrete-time channel induced by user mobility can be char-
acterized by an (L +1)-tap TV FIR filter. In order to parsimoni-
ously model the channel and reduce the channel estimation com-
plexity, a useful approach is to approximate the channel time varia-
tion by a basis expansion model (BEM) [7] exploiting the
superposition of 20 +1 basis functions 4 [n], ¢ =-0,...0, as

[
Hmll~ Y h,,A[n], n=0,-,N-1,
q=—0

" time interval.

where h[n,l] is the [” channel tap at the n
Equivalently, in matrix form

h,=Bh,, Q)]
where  h, =[A[0;/},---,A{N-L/] , h, :[hfg,,,---,hg_,]r ,
B=[A_,,--A,],and A, =[2,[0]---, 4[N -1]]".
Several choices are possible for the basis functions (see [8] and
references therein for further details). In our simulations, we will
consider the so-called generalized complex exponentials (GCE).
Whichever is the basis, the vectors {},} are fixed, and therefore, in
order to estimate the channel behaviour, we only need to estimate
the N, =(L+1)(2Q +1) expansion coefficients {,,} . The number
20 +1 of basis functions increases with the normalized maximum
Doppler spread, defined as v, = f, /A, , where f, is the maxi-
mum Doppler spread and A, is the OFDM subcarrier spacing.

3. OFDM SYSTEM MODEL
OFDM systems modulate the data s=[s[0],---,s[N —1]]" on N
orthogonal subcarriers by IFFT processing. A cyclic prefix (CP),
with length greater than the channel order L, is concatenated to the
transmitted signal in order to convert the effect of the channel into a
circular convolution. After CP removal, the received data can be
reshaped by a time-domain windowing w =[w,...,w,_,]" in order
to reduce Doppler effects [4], and are successively demodulated by
an FFT processing. Summarising, the received data vector
y =[y[0],---, »IN —1]]" can be expressed by
0

y=Y CAs+n.=H,s+n,, )

q=-0
where, by applying the BEM model (1) to the windowed channel
taps diag(w)h, [8], C, :Fdiag(}»q)F” turns out to be circulant
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N-1
with [C ], =N’]Zﬂ,q[n]e , and A, =diag(F,h'?") ,
where F is the unffdry DFT matrix, F, contains the first L +1

—j2z(k-m)n/ N

columns of VNF , h?® =[h,q,-sh,, T, n, =Fdiag(w)n, and
n, =[n[0],---,n[N —1]]" is an additive white Gaussian noise.

We remark that for TI channels 0 =0 in (2), and H, =C A, is a
diagonal channel matrix. The more the channel is TV (i.e., the
greater is v, ), the more the channel matrix H,. in (2) departs from
a diagonal one, which means that more ICI is introduced.

4. CHANNEL ESTIMATION BY PSAM
A frequency-domain PSAM approach to estimate the channel was
analyzed in [6][8], where, as suggested in [10][11], known pilots are
grouped in P clusters, each of length L, , and interleaved with the

data to form the overall transmitted vector
s=[dV",pO7 ..., D" p™T,d" V"] as shown in Fig 1.
| Lr |
an p0» p® de+n pP de=n

Fig. 1. Pilot placement.

in (2) is almost banded, and neglecting its
residual values out of the bandwidth B+1 , we set,
L,=2B+1=40+1 , P=L+1 , where N,=P(2B+1) and
N =N-N, are the total number of pilot and data symbols, de-
noted by p=[p®,---,p?"]" and d=[dO7,---,d"*"]" respec-
tively. The cluster d“”*", which is present only when N, is not a
multiple of P, has drmen51on N, P\_N /PJ The B+1—2Q+1
samples of the received vector y that correspond to the m” pilot
cluster can be approximated by

Due to the fact that H,,

0
v D COA PN, ©)
9=-0

if the data-induced interference is negligible, as in the optimal
FDKD training [11], where each cluster p” contains a single pilot
surrounded by B zeros at each edge. In (3) {C)} are the
(B+1)x N, matrices representing the submatrices of C, that op-
erate on the pilots, and {A”’} are N, xN, dlagonal matrices
carved out from A, and correspond to the pllot positions (see [6]
for further details). Moreover n!" is the corresponding part of n,, .
In order to make explicit the dependence on h=[h"" ... K@7]",
equation (11) can be opportunely rearranged as

"' =C"V h+n{", 4)

where C“”)—[C(fgm, Cg’fﬂ] , v, —12Q+,®dzag(p)F(”) , and

F” collects the rows of F, correspondmg to the pilots positions.

Stackrng all the data in the column vector §=[§"" . §OI,
we obtain the estimation problem
v, | [ng
y= : |h+| : |=Ph+n,, 5)
cv, n!”

where P is known and depends on pilot values and positions [8].

5. KALMAN FILTER CHANNEL ESTIMATOR
As shown in [6], a 1” order Gauss-Markov process is accurate
enough to model the variation of the BEM coefficients from an
OFDM block to the next. Thus, it is possible to assume
h, =Ah,_ +v,, (6)
where h, are the BEM coefficients that represent the channel dur-
ing the k" OFDM block, A drives the model evolution, and v, is

the channel innovation, characterized by

E(v) =0y :; E(hyv, )= 0,; E(v, vl )=Qds[m] . (7)
Thus, for the £” OFDM block, (5) can be written as

y,=Ph +n,, ®)

where we omitted the subscript , for simplicity.
The Kalman filtering algorithm for the model described by (6) and
(8) is classically expressed as follows [12]

M; =AM; A" +Q

K, =M/P* (R, + PM/P")"

h, =Ah_, +K,(j,~ PAh,_)

M (K, P)M!
where, for wide sense stationary (WSS) channel statistics, A and
Q can be easily derived [6] by Yule-Walker equations [12].
However, A and Q can be adaptively estimated also in non-WSS
environments (e.g., when the Doppler spread v, changes due to

changes of the mobile speed). We refer to [6] for the Kalman filter
initialization, recursion and model update (i.e., A,,Q, ).

Forward Error Cov.

Kalman Gain
)

Posteriori Estimation

Posteriori Error Cov.

6. DATA-AIDED VIRTUAL PSAM

In order to reduce the rate penalty N, /N induced by the PSAM
approach, we propose to periodically alternate PSAM OFDM blocks
of Fig.1 with V-PSAM OFDM blocks, where the transmitted vector
s contains only data. V-PSAM channel estimation/tracking is
pursued by the following steps (S).

S-1) The channel values for the k" block are predicted from the
values estimated in the previous block. The optimum predictor for
the Kalman filter, is well known to be [12]

h' =Ah, . (10)

§-2) The channel prediction lﬂlﬂf’ ) is used to recover the data trans-
mitted during the k" block from the received vector y , of (2) by
8= £, ¥ =gy, (11)
where g, (sh) represents a suitable equalization strategy (linear or
non linear) for a given channel h , and f,, () the hard decision.
$-3) A set Q¥ of N , indexes has to be selected from the total or-
dered set of active subcarriers Q, =<1,2,---,N >, according to an
opportune metric, in order to 1dent1fy as v1rtua1 pilots (VP) those
subcarriers where data have been detected without any error, with
the highest probability. Thus, the VP vector p& obtained selecting
the elements of 8" that correspond to the set Q" is expressed by
pl’ =§"@Q"), (12)
where, taking advantage of the soft information contained in the
equalized vector y\", the virtual pilot set is selected according to
Q" =argmini PRV (@ #5, (@5 (@3} (13)
S-4) The first VP-aided estimation ﬁ:’ of the channel is obtained by
using the VP vector p” instead of p to generate the matrix P in
(5) (see also (3)); then solve the estimation problem of (8) by up-
dating the Kalman filter estimator in (9)
S-5) A more reliable data vector §{” is obtained b a second
equalization/detection, plugging the reﬁned estimate h in (11).
S§-6) Denoting with N, the total number of equahzatlons for each
OFDM block, 1terate (N —2) times the steps S-3, S-4 and S-5, to
finally obtain h and § AW )
S-7) (Optional) In order to improve the channel predlctlon for the
next OFDM block, perform S-3) and S-4) to obtain h
S-8) Move to the next OFDM block and restart from Step S-1.
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6.1 Virtual Pilot Selection

In order to solve the VP selection problem (13), a reasonable sim-
plifying assumption is the independence of correct decisions on each
subcarrier. Thus, defining Q a pilot pattern that belongs to the set
Q, ={a,m,,,0, > o [l,N] cN'} of all the possible
pattperns, we can exprepss the probability of erroneous detection on
pilot pattern Q conditioned on the soft equalizer output y, (Q) as

P{Sk(Q) #8,(Q) ¥, ()} =1-P{5,(Q) =5,(D) |y, (D)}

14

=1- HP{ S (], =[5, (] [y, (D]}, 4
which allows to rewrite (13) as

Q= argmaXl_p[P{[§k Q] =[s, (] [y, (]}.  (15)

QEQ.\'p i=1
This problem resembles a vector generalization of the problem to
find the most reliable layer in a NC-MIMO detection scheme [9].
For a block LMMSE equalizer g,,(;h) and QPSK, [9] proved that
the most reliable single layer/subcarrier can be selected by
Iy, ); |
=argmax P{[s s arg max 16
g {I8:1 =[s:1, [y, ).} ~arg {MSE » (16)

upl
ie{l,.,N} ie{l,..,N}

where MSE, = E{|[y, —s,]. I’} Expressions (15) and (16) would
suggest to select the N, entries of Q=<a),,,"-,@, > as those
indexes among all the N subcarriers with the ﬁrst N , most reli-
able metrics (16). This is equivalent to maximize the product of the
metrics, thus leading to

O - l[yk ]i |

Q-argmax [ [J00
This solution of the VP selection problem is characterized by a quite
high complexity due to the evaluation of (17) over all the possible
NU(N,(N-N,)!) combinations of N, subcarriers out of N .
Moreover, the almost random VP pattern that emerges from the
unconstrained optimization (13), although reliability-wise optimal
(for LMMSE equalizers), could lead to an ill-conditioned matrix P
in the estimation problem (8), thus potentially causing a significant
estimation performance loss.
In order to both reduce the implementation complexity and avoid an
ill-conditioned estimation, a smart idea is to constrain the VPs to a
set fo,,‘,’) cQ, of P equally-spaced L,-long clusters defined by

QP ={Q,, (i) U uQ,, (i, +(P-DA): i €N, .}, (18)

where Q, (i) =<i,i; +1,---,i; +(L,—1)>, and A=| N/P| is the
distance between two successive pilot clusters. This reduces to A
the searches for the most reliable VP set, where A represents all the
possible VP patterns obtainable as shifted versions of the
equi-spaced PSAM training pilots of Fig.1. Noteworthy, in
V-PSAM the VP cannot be the optimal FDKD training [11] that we
exploit during the PSAM mode, because in V-PSAM mode there are
not zeros, but just data. However, groups of equi-spaced clusters
[14], although suboptimal with respect to the optimal FDKD, are
reliable for channel estimation of TV OFDM systems [13], reducing
both the ill-conditioning of eq. (5) (thanks to the almost “uniform”
sounding of the channel) and the data-induced ICI.

However, care must be taken in exploiting (17) to solve (15) when
the search is constrained over the subset of equi-spaced clusters
Q“‘” rather than over the total set Q, . For instance, in the con-
strained case, a VP pattern with all the subcarrlers characterized by
an average reliability (16), but not maximum product (17), could be
preferable to a second pattern with maximum product (17) and with
a very high reliability (16) for all-but-one subcarriers. Indeed, if this

(17)

worst subcarrier is not reliable, it could be in error, differently from
all the subcarriers in the first pattern. This intuition can be formal-
ized by noting that, at reasonably low BER, the probability of er-
roneous detection in (13) can be approximated by the probability to

have just one error, which dominates the error events, as
NP
PO (Q)#s, (Q)) = P{l err} + ZP{n err} = P{l err}. (19)
n=2
In this view, a global reliability function that minimizes the prob-
ability to have a pilot pattern with a single subcarrier in error is the
one that maximizes the reliability of the less reliable subcarrier in
the pattern. Thus, we have to maximize the minimum rather than the
product of the metrics of all the subcarriers that, exploiting (16) for
LMMSE equalizers, leads to the following pilot selection rule

Q“” = arg max min {M} .

20
aeagn <N | MSE, (20)

Actually, (16) is a combining of two other metrics [9]: the first is the
classical average selection metric of the NC-MIMO receiver
iysy =argmax {1/ MSE, } ,

iell,.,N}

(2]

which depends on the channel MSE, = E{|[y—-s],[} of the
soft-output y of the MMSE equalizer g, (;h); the second is the
instantaneous reliability metric of the equalizer soft output [y], for
the i layer/subcarrier, expressed by

L4, = argmax {| [y, ], |} .

iell,., N}

(22)

Expressions (21) and (22) are possible alternative reliability metrics,
for those equalizers for which the metric (16) is not guaranteed to be
optimal, such as the BDFE or the low-complexity banded equalizers
of [5]. The performance of selection metrics (20), (21) and (22), as
well as the performance of the minimum and product metric com-
biners (20) and (17) will be compared by simulations in the next
section to assess the best strategy to weapon the Kalman filter
tracking in V-PSAM mode.

7. SIMULATION RESULTS

We show simulation results for QPSK OFDM systems with N,
active carriers, N, = N — N, guard-band subcarriers, and a Jakes’
channel with constant power delay profile. The MBAE-SOE design
proposed in [5] is employed for the receiver window w . We show
results for N=256, N,=244, 0=2, L=4, B=20=4 and
due to space limitation only for a Doppler spread v, =10.24% ,
which represents a quite high mobility scenario and a hard test for
channel tracking/equalization of OFDM systems not equipped by a
permanent PSAM training.

Simulations were organized by transmitting three PSAM OFDM
blocks followed by five V-PSAM OFDM blocks. The transmission
of these eight OFDM blocks was iterated 250 times in order to test
the average tracking capability of the Kalman filter in the data-aided
scenario. Performances are shown in terms of channel estimation
normalized mean squared error (NMSE) [6] as well as in terms of
the data BER, obtained by coupling the proposed channel estima-
tion/tracking strategy with the low-complexity banded-LMMSE and
banded-BDFE equalizers proposed in [5]. NMSE and BER are in a
close liaison in this context due to the data-aided channel tracking in
the V-PSAM mode. Indeed, a very low BER on the VP is necessary
to obtain a good channel estimate (low NMSE), and vice versa. Thus
we will use the BER on the VP to establish which selection metric
among the proposed ones, most reliably identifies the detected data.
Fig.2 shows the BER at the first V-PSAM block (the 4™ in our test)
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for a banded-LMMSE equalizer: it is evident the capability of the
“minimum’” reliability metric (20) to select as VP those subcarriers
with BERs significantly lower than the data BER after the first
equalization step S-2. Fig.2 also shows that, as expected for
full-LMMSE equalizers, the “Combined” metric (16) outperforms
the separate “MSE” and “Abs” metrics ((21) and (22)). The slight
advantage in terms of data BER obtained after the second equaliza-
tion/detection of step S-5, has not to be disregarded in a tracking
mode scenario. Indeed, due to the prediction step S-1, the three
metrics could lead to significant different performance after few
OFDM blocks (see also Fig.4 for BER time evolution). Fig. 3 shows
similar results for a banded-BDFE equalizer [5], where the “Com-
bined” metric is no longer optimal and the intuitive “4bs” metric
shows the best performance. Fig. 4 shows, for a fixed SNR, the
NMSE and BER evolution of a banded-BDFE for the eight OFDM
blocks. We compared N, =2 with N, =3 equalizations, using
the “Abs” metric. Note that all the BERs at a given OFDM block
depend on the number of channel estimates performed at the pre-
vious blocks. It is evident that the two (S-4 steps) channel estimates
performed in our procedure when N, =3 give excellent perform-
ance both in terms of NMSE and data BER, which during the
V-PSAM mode (blocks 4-8) are almost equivalent to those in PSAM
mode (blocks 1-3). However, the third equalization (S-5 at the
second iteration), does not improve significantly the performance in
terms of BER. Thus, the suggested choice is to perform two
equalizations (S-2 and S-5) with N,, =2 and enable option S-7 for
the second channel estimation. Fig.4 also shows that the “minimum”
combining strategy (20), under the constraint (18), outperforms, as
expected, the “product” combining (17).

8. CONCLUSIONS

A data-aided Kalman channel tracking for OFDM system in fast
time-varying channels has been considered. The suggested tech-
nique effectively tracks the channel changes in the data-aided mode.
It has been proved by simulations that for low-complexity
banded-LMMSE and BDFE equalizers, the channel estimation
NMSE penalty, as well as the BER degradation, could be taken
under control by an opportune selection of the most reliably detected
data. A deeper analytical insight on the performance limit of the
proposed technique could be the subject of future work.
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Fig.2. Banded-LMMSE with “minimum” metric combiner.
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Fig.3. Banded-BDFE with “minimum” metric combiner.

-8~ Pilot-aided

—©- Data-aided, 1 ch. est., minimum
_o5|| =& Data-aided, 2 ch. est., minimum
—6— Data-aided, 1 ch. est., product

. 2, mi
, Neq=2, min
~o- Data, 2 eq., Neq=3, min
—— Data, 3 eq., Neq=3, min.
— Data, 2 eq., Neq=2, prod.
—#— VP, 1eq, Neq=2, min
- VP, 1 eq., Neg=3, min.
—— VP, 2 eq., Neq=3, min, |
1| =& VP, 1 eq. Neg=2, prod 4

Block index

Fig.4. BER and NMSE evolution for Banded-BDFE (SNR=30 dB).
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