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ABSTRACT

Based on an energy conservation relation, the tracking perfor-

mance of a family of generalized constant modulus algorithm

(GCMA) is analyzed in this paper. Both theoretical analysis

and simulation results validate the excellent tracking perfor-

mance of the extended constant modulus algorithm (ECMA)

in some situations.

Index Terms— Adaptive filters, adaptive equalizers, track-

ing filters.

1. INTRODUCTION

Due to the growing demand for digital communications, blind

adaptive algorithms have an important role in improving data

transmission efficiency. Until now, the three best known and

widely used blind equalization algorithms for two dimensional

(2-D) modulation schemes, such as quadrature amplitude mod-

ulation (QAM) and carrierless amplitude and phase modula-

tion (CAP), are the constant modulus algorithm (CMA) [1],

the reduced constellation algorithm (RCA) [2] and the mul-

timodulus algorithm (MMA) [3]. A fly in the ointment is

that the CMA is blind to carrier phase. To recover the car-

rier phase, the CMA needs an additive rotator at the output of

equalizer, but it increases the complexity of implementation

of the receiver in steady-state operation. Both the RCA and

the MMA are capable of recovering the carrier phase. How-

ever, since the equalization errors of the real parts and imag-

inary parts signals are assumed to be independent in the cost

functions, the RCA and the MMA may erroneously cause a

phase-splitting equalizer to converge to a degenerate diagonal

solution [3], [5]. By combining the merits of RCA, MMA

and CMA, Thaiupathump [5] proposed the square contour al-

gorithm (SCA) and its generalization named the generalized

SCA (GSCA) and sign SCA (SSCA). The SCA and its gener-

alized algorithms can avoid the degenerate diagonal solution

and recover the carrier phase simultaneously. Recently, by

generalizing the definition of complex modulus, a family of
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generalized constant modulus algorithm (GCMA) is proposed

in [6], which contains not only the well-known CMA, but also

the sign Godard algorithm (SGA) [4], the SCA and its gener-

alized algorithms as special examples. Naturally, the conver-

gence and tracking analysis of GCMA is a problem of inter-

est. This paper studies the tracking performance of GCMA in

an environment with a small degree of nonstationarity. Both

theoretical analysis and simulation results suggest that the ex-

tended constant modulus algorithm (ECMA) [6], a new con-

stant modulus-type algorithm in the family of GCMA, can

reach a lower minimum steady-state mean squared error than

the CMA and the GSCA in some situations.

2. BACKGROUND

We consider the tracking performance of GCMA implemented

in fractionally-spaced form. Fig. 1 shows the channel-equalizer

model that arises when T
2 -fractionally spaced equalization (FSE)

is used. The discussion here is also applicable to a more

general T
P -FSE. We split the 2M length channel coefficients

c = [c(0), c(1), · · · , c(2M − 1)] into even part and odd part

as follows:

ce = [c(0), c(2), · · · , c(2M − 2)],

co = [c(1), c(3), · · · , c(2M − 1)].

In the same way, two sub-equalizers of length N are defined

as

we = [w(0), w(2), · · · , w(2N − 2)]T ,

wo = [w(1), w(3), · · · , w(2N − 1)]T

where T denotes the transpose operator of vectors. We further

define the equalizer weight column vector w = [wT
e ,wT

o ]T

and the input row vector ui = [uo,i,ue,i], where

uo,i = [uo(i), uo(i − 1), · · · , uo(i − N + 1)],

ue,i = [ue(i), ue(i − 1), · · · , ue(i − N + 1)].

Then the equalization output is given by y(i) = uiw.

Let complex number z = zR + jzI , where j =
√−1, and

zR and zI are the real and imaginary part of z respectively. A
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family of generalized complex modulus of z can be defined

as [6]

|z|� = (|zR|� + |zI |�)1/�, � ≥ 1 (1)

where |x| denotes the absolute value or modulus of real or

complex number x. In [6], the GCMA minimizes cost func-

tion

J�,p,q(w) = E{||y(i)|p�−R�,p,q|q}, � ≥ 1, p ≥ 1, q ≥ 1 (2)

via stochastic gradient descent algorithm, where E{·} is the

expectation operator, �, p and q are positive integers, and the

dispersion constant R�,p,q is related with the statistics of source

s(i). Choosing different �, p and q, different realization forms

of GCMA, which includes the CMA [1], the SGA [4], and the

GSCA, SCA and SSCA [5], can be obtained. The RCA and

MMA are closely related with GCMA and their cost func-

tions can be derived from the generalized cost function (2)

by removing the statistical correlation terms of the real part

component yR(t) and the imaginary part component yI(t) of

the output y(t) [6]. A disadvantage of such simplification is

that the RCA and the MMA may erroneously cause a phase-

splitting equalizer to converge to a degenerate diagonal solu-

tion [3], [5]. An important property of GCMA is its carrier

phase recovery ability if � �= 2 is selected [6]. In this paper,

we focus on a special family of GCMA defined by choosing

p = q = 2 and � ≥ 1. This family includes most of the im-

portant algorithms such as the CMA (� = 2) in [1], the GSCA

(� = ∞) in [5] and the ECMA (� = 4) in [6].

Considering the differential of |z|�
d|z|� = |z|1−�

� (zR|zR|�−2dzR + zI |zI |�−2dzI), (3)

the conjugated gradient of J�,2,2(w) with respect to w can be

shown to be

∂J�(w)
∂conj(w)

= 4E{|y(i)|2−�
� (|y(i)|2� − R�)[yR(i)|yR(i)|�−2

+jyI(i)|yI(i)|�−2]u∗
i } (4)

where J� ≡ J�,2,2, R� ≡ R�,2,2, conj(·) is the element-wise

complex conjugation operator, and ∗ denotes the conjugated

transpose operator of vectors. The dispersion constant R� can

be evaluated by assuming perfect equalization, i.e., y(i) →
s(i). Thus, putting

∂J�(w)
∂conj(w) = 0 leads to

R� =
E{|s(i)|4�}
E{|s(i)|2�}

. (5)

Specially, R� reduces to R2 = E{|s(i)|4}
E{|s(i)|2} when � = 2 is se-

lected [1].

3. TRACKING ANALYSIS

We follow the way in [7] and [8] to analyze the tracking

performance of GCMA. Descending along the instantaneous

conjugated gradient descent direction (4) leads to the learning

rule of GCMA with a constant step-size μ

wi+1 = wi + μu∗
i fe(i) (6)

where

fe(i) = |y(i)|2−�
� (R� − |y(i)|2�)[yR(i)|yR|�−2(i)

+jyI(i)|yI(i)|�−2(i)]. (7)

In a nonstationary environment, the channel varies with time

and therefore the zero forcing weight vector w0 itself may

also assumed to vary with time, say w0
i . It is customary to

assume that w0
i follow the model [7]

w0
i+1 = w0

i + qi. (8)

In this model, qi is an independently and identically distributed

(i.i.d.) sequence with positive definite autocorrelation matrix

Q = E[qiq∗
i ]. We use the model (8) to study the tracking

performance of GCMA. Subtracting both sides of (6) from

the zero-forcing solution w0
i gives the weight error equation

w̄i+1 = w̄i − μu∗
i fe(i) + qi (9)

where w̄i = w0
i − wi and w̄i+1 is defined in the same way.

As we focus on the tracking performance of GCMA capable

of carrier phase recovering, we assume that y(i) differs from

s(i) only by an unknown delay D. Thus, we introduce re-

spectively the a-priori and a-posteriori estimation errors

ea(i) = s(i − D) − y(i) = uiw̄i,

ep(i) = ui(w̄i+1 − qi).

Then we can rewrite (9) as

w̄i+1 = w̄i − μ̄(i)u∗
i [ea(i) − ep(i)] + qi (10)

where μ̄(i) = 1/‖ui‖2. Assuming the sequences ui and qi

are mutually statistically independent, we have the following

important equality in the steady-state [7]

E{μ̄(i)|ea(i)|2} = tr(Q)+E

{
μ̄(i)

∣∣∣∣ea(i) − μ

μ̄(i)
fe(i)

∣∣∣∣
2
}

.

(11)

The steady-state mean squared error (MSE) is given by MSE =
limi→∞ E{|ea(i)|2}.

To write the following derivation more compactly, we de-

fine

ea ≡ ea(i), μ̄ ≡ μ̄(i), y ≡ y(i), u ≡ ui, s ≡ s(i − D)

for i → ∞. To simplify the discussion, let us further assume

[7], [8]: (1) the transmitted signal s(i−D) and the estimation

error ea(i) are independent in steady-state so that E[s∗(i −
D)ea(i)] = 0, since s(i − D) is assumed zero mean; (2)

III  126



the scaled regressor energy μ2‖ui‖2 is independent of y(i) in

steady-state. Then, expanding (11) leads to

E[e∗afe]+E[eaf∗
e ] = tr(Q)/μ+μE{‖u‖2}E{|fe|2}. (12)

To approximate both sides of (12), we write fe as a function

of y explicitly, say fe ≡ fe(y)1. For 2 ≤ � 
 ∞, |y|� is a

smooth function of y and so that fe(y). In this case, we can

approximate fe(y) by utilizing its first order derivative. As

y = s− ea, for small error ea, it is reasonable to approximate

fe(y) as

fe(y) ≈ fe(s) + dfe(s) (13)

where

dfe(s) = −dfe(s)
dsR

ea,R − dfe(s)
dsI

ea,I .

For � = 1 or � = ∞, as |y|� and fe(y) are not smooth func-

tions of y, approximation (13) no longer holds. We will con-

sider this case separately later. Using (13), for small step-size

μ, expression μE{‖u‖2}E{|fe|2} can be approximated as

μE{‖u‖2}E{|fe|2} ≈ μE{‖u‖2}E{|fe(s)|2}. (14)

Supposing the signal constellation is symmetrical, we can

write E{|fe(s)|2} as

E{|fe(s)|2} = 2E{|s|4−2�
� |sR|2�−2(R� − |s|2�)2}. (15)

On the other hand, expression E[e∗afe]+E[eaf∗
e ] can be eval-

uated as

E[e∗afe] + E[eaf∗
e ] = 2Re{E[e∗afe(y)]}

≈ 2Re{E[e∗afe(s)]}
+2Re{E[e∗adfe(s)]}

= 2Re{E[e∗adfe(s)]}. (16)

Supposing the signal constellation satisfies the so-called cir-

cularity condition E[s2] = 0 and considering the approxima-

tion

d|y|� = |y|1−�
� (yR|yR|�−2dyR + yI |yI |�−2dyI)

≈ −|s|1−�
� (sR|sR|�−2ea,R + sI |sI |�−2ea,I),

we can evaluate E[e∗afe]+E[eaf∗
e ] after neglecting the higher

order terms of ea through straightforward algebraic calcula-

tions as

E[e∗afe] + E[eaf∗
e ] ≈ A�E{|ea|2} (17)

where

A� = E
{
4|s|4−2�

� |sR|2�−2

+(2� − 4)|s|2−2�
� |sR|2�−2(R� − |s|2�)

−(2� − 2)|s|2−�
� |sR|�−2(R� − |s|2�)

}
. (18)

1We no longer use the notation fe(i) in the following, where i is the

discrete time index.

Note that quantity A� only depends on the statistics of source

s(i). To simplify the notation, we introduce another quantity

B� that also only depends on the statistics of source as

B� = E{|fe(s)|2} = 2E{|s|4−2�
� |sR|2�−2(R� − |s|2�)2}.

(19)

Now, considering (12), (14), (17) and the definition of B�, we

get the MSE of GCMA at steady-state as

MSEGCMA,� = E{|ea|2} =
tr(Q)/μ + μB�E{‖u‖2}

A�
.

(20)

Choosing � = 2 in (20), we get the MSE formula of CMA

derived in [7].

In the case of � = 1 or � = ∞, the formula of A� and B�

in (18) and (19) should be modified because the basic approx-

imation (13) no longer holds. Noting |ze
jπ
4 |1 =

√
2|z|∞, GC-

MAs with generalized complex moduli defined by choosing

� = 1 and � = ∞ are equivalent in the sense of an immaterial

fixed rotation angle (ej π
4 ). So, we only present the expression

of A∞ and B∞ here. Noting J∞(w) = 1
16JGSCA(w), we

slightly modify the results in [5] to get the expressions of A∞
and B∞ as

A∞ = 0.5E{(3s2
R − R∞)X

′}, (21)

B∞ = 2E{s2
R(s2

R − R∞)2X
′} (22)

where X
′
= sgn(sR)

2 [sgn(sR + sI) + sgn(sR − sI)].
By observing (20), one can find that in the noiseless case

and for non-constant modulus signal, there exists a finite op-

timal step size that minimizes the steady-state MSE, which

gives

μ
[opt]
� =

√
tr(Q)

B�E{‖u‖2} , (23)

MSE[opt]
� =

2
√

B�tr(Q)E{‖u‖2}
A�

. (24)

We use the quantity

η� = 10log10

MSE[opt]
CMA

MSE[opt]
GCMA,�

(25)

defined as the ratio of the minimum MSE of CMA at steady-

state to the one of GCMA to evaluate the tracking perfor-

mance of GCMA with different �. Table I summarizes the

results for some commonly used signal constellations. From

Table I, one observes that neither the CMA nor the GSCA

provides the best tracking performance.

4. SIMULATION RESULTS

In this section, we provide the simulation results to compare

the experiment performance with the one predicted by the de-

rived expressions. We consider the channel

c = [0.1, 0.3, 1,−0.1, 0.5, 0.2]
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and an FIR filter with 4 taps as a T
2 -fractionally spaced equal-

izer. qi = qi,R + jqi,I are modeled as a complex i.i.d. se-

quence with all the elements of qi,R and qi,I drawn from the

normal distribution N (0, 10−3) independently. In this way,

the autocorrelation matrix Q = 2 × 10−6I, where I is the

identity matrix. QAM-16 constellation is considered. Fig. 2

shows the analysis and simulation MSE of ECMA and GSCA

with varying step sizes. The value of simulation MSE is ob-

tained through averaging over 100 independent experiments

and it is close to the one predicted by (20). The minimum

achievable simulation MSE of ECMA is about 1.8dB lower

than the one of GSCA.

5. CONCLUSION

This paper analyzes the tracking performance of a family of

GCMA capable of carrier phase recovering through a recently

proposed energy conservation relation. Simulation results with

QAM-16 source validate the theoretical analysis and better

tracking performance of ECMA compared with GSCA.
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Table 1. Tracking Performance Index η� of GCMA

� = 3 � = 4 � = 5 � = 6 � = ∞
QAM-16 1.1dB 1.8dB 2.0dB 1.9dB -0.7dB

QAM-32 0.2dB 0.0dB -0.3dB -0.7dB -4.7dB

QAM-64 0.9dB 1.4dB 1.5dB 1.5dB -2.7dB

QAM-128 0.2dB 0.2dB 0.1dB -0.1dB -4.7dB
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Fig. 1. A multichannel model for T
2 -fractionally spaced

equalization, where i is the discrete time index.
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Fig. 2. Analysis and simulation MSE of ECMA and GSCA

averaging over 100 experiments. QAM-16 constellation is

considered.
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