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ABSTRACT

We deal with energy ef cient time-division multiple access over fad-
ing channels with nite-rate feedback for use in the power-limited
regime. Through FRF from the access point, users acquire quan-
tized channel state information. The goal is to map channel quan-
tization states to adaptive modulation and coding modes and allo-
cate optimally time slots to users so that the average transmit-power
is minimized. To this end, we develop a joint quantization and re-
source allocation approach, which decouples the complicated prob-
lem at hand into three minimization sub-problems and relies on a
coordinate descent approach to iteratively effect energy ef ciency.
Numerical results are presented to evaluate the energy savings.

Index Terms— Quantization, Optimization methods, Multiuser
channels, Minimum energy control, Resource management

1. INTRODUCTION

Resource allocation for fading channels has been studied in [1, 2]
and energy-ef ciency policies for time-division multi-access (TDMA)
have been investigated from an information theoretic perspective
in [3]. Assuming that both transmitters and receivers have avail-
able perfect (P-) channel state information (CSI), the approaches
in [3] provide fundamental power limits when each user can support
capacity-achieving codebooks, and also yield guidelines for practi-
cal designs where users can only support a nite number of adaptive
modulation and coding (AMC) modes with prescribed bit error prob-
abilities (BER). While the assumption of P-CSI renders analysis and
design tractable, it may not be always realistic. It then motivates a
nite-rate feedback (FRF) model, where only quantized (Q-) CSI is
available at the transmitter through a nite number of bits of feed-
back from the receiver. Based on the FRF, [4] minimized transmit-
power of orthogonal frequency-division multiplexing (OFDM) sys-
tems. In this paper, we consider energy ef ciency issues for TDMA
over fading channels with FRF. Availability of Q-CSI at the trans-
mitters entails a nite number of quantization states. These states
are indexed by the bits that the receiver feeds back to transmitters
and for each of them the resource allocation is xed. In this sce-
nario, the goal is to map channel quantization states to AMC modes
and allocate optimally time slots to users so that transmit-power is
minimized. To tackle it, we need to optimize three subsets of vari-
ables: transmit-power, quantization regions and time allocation poli-
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cies. Instead of optimizing them jointly, we decouple the compli-
cated problem at hand into three sub-problems and then solve each
of them in an optimal way; i.e., we resort to a coordinate descent [5]
approach to come up with an iterative algorithm which assembles
the different sub-solutions to solve the main problem.

2. MODELING PRELIMINARIES

Consider K users linked wirelessly to an access point (AP). The
input-output relationship is y(n) =

∑K

k=1

√
hk(n)xk(n) + z(n)

where xk(n) and hk(n) are the transmitted signal and fading process
of the kth user, respectively, and z(n) denotes AWGN with variance
σ2 = 1. We con ne ourselves to TDMA; i.e., when xk(n) �= 0, we
have xi(n) = 0 for ∀i �= k. We also assume that {hk(n)}Kk=1 are
jointly stationary and ergodic with continuous stationary distribu-
tion. Each channel is slowly time-varying relative to the codeword’s
length and adheres to a block at fading model [1, 2]. Because a
frequency-selective channel can be decomposed into a set of par-
allel time-invariant Gaussian channels, our results apply readily to
frequency-selective channels as well. User transmissions to the AP
are naturally frame-based, where the frame length is chosen equal
to the block length. Given an AMC pool containing a nite num-
ber of modes, each user can vary its transmission rate via AMC per
block. Having perfect knowledge of {hk}Kk=1, the AP assigns time
fractions to users and indicates the AMC mode indices (a.k.a. Q-
CSI) through a message (uplink map) before an uplink frame. Users
then transmit with the indicated AMC modes at the assigned time
fractions. FRF from the AP to users consists of a few bits indexing
predetermined AMC modes and time slots.1

3. QUANTIZATION AND RESOURCE ALLOCATION
WITH FINITE RATE FEEDBACK

We wish to minimize total power under individual average rate con-
straints in a TDMA system. Given a time allocation policy τ (·), let
τk(h) denote the time fraction allocated to user k if fading h occurs.
With FRF from the AP, particularly in frequency division duplex
(FDD) systems, users can only adopt a nite number of resource al-
location vectors determined by the Q-CSI of each realization h. For
all k ∈ [1, K] and l ∈ [1,Mk], let Qk,l denote the quantization

1Notation: T denotes transposition, �x� the minimum integer ≥ x, and
[x]+ := max(x, 0). Using boldface lower-case letters to denote column
vectors, we let h := [h1, . . . , hK ]T denote the joint fading state over a
block, and F (h) their joint cumulative distribution function (cdf).

III  1171424407281/07/$20.00 ©2007 IEEE ICASSP 2007



region such that when h ∈ Qk,l, the kth user’s lth AMC mode is
adopted if user k is selected for transmission. Corresponding toQk,l,
an AMC mode can be represented by a rate-power pair (ρk,l, πk,l),
where πk,l is the transmit-power for user k to support rate ρk,l of the
AMC mode when h ∈ Qk,l. Note that with Q-CSI, user k is only
allowed to use a xed transmit power πk,l for its lth mode. We need
to optimize πk,l in our FRF setup. In this setup, the optimization
variables consist of quantization regions Q := {{Qk,l}

Mk

l=1}
K
k=1,

transmit powers π := {{πk,l}
Mk

l=1}
K
k=1 and the time allocation pol-

icy τ (·). By the de nition of Qk,l, the rate allocation is absorbed in
the quantization design. Let εk,l(γ) denote the BER for a given SNR
γ for the kth user’s lth AMC mode. For practical modulation-coding
schemes with e.g., M -QAM constellations and error-control codes,
εk,l(γ) is decreasing and convex.

With R̄k and ε̄k collecting the prescribed rate and BER require-
ments, power weights μk, and using the previous de nitions, the
energy-ef cient quantization and resource allocation problem is
⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

minQ,π,τ (·)

∑K

k=1 μk
∑Mk

l=1 πk,l
∫
Qk,l

τk(h)dF (h)

s.t. ∀h,
∑K

k=1 τk(h) ≤ 1;

∀k,
∑Mk

l=1 ρk,l
∫
Qk,l

τk(h)dF (h) ≥ R̄k;

∀k,
∑Mk

l=1

ρk,l

R̄k

∫
Qk,l

τk(h)εk,l(hkπk,l)dF (h) ≤ ε̄k.

(1)
where the left-hand side of second and third constraint represents the
average rate and BER per user. The problem (1) is complicated and
not convex. To solve it, we divide it into three separate sub-problems
and then solve each of them in an optimal way; i.e., we resort to a
coordinate descent [5] approach to come up with an iterative algo-
rithm which assembles the different sub-solutions to solve the main
problem. Notice that this is a well appreciated strategy in the eld of
quantization theory, and a good example is the Lloyd Algorithm [6].

3.1. Initialization

We rst use the resource allocation policies of [3] to initialize our
coordinate descent method. Given AMC modes and P-CSI, [3, The-
orem 6] yields the energy-ef cient rate-power and time allocation
policies τ ∗(·) via greedy water- lling. With the associated Lagrange
multiplier vector λ

P∗, we can derive the quantization regions Q∗

corresponding to the rate allocation2:

Proposition 1 With optimum rate allocation, the optimal regionQ∗
k,l

for user k ∈ [1,K] is given by Q∗
k,l =

{
h : hk ∈ [q∗k,l, q

∗
k,l+1)

}
,

where q∗k,l = (pk,l−pk,l−1)/(ρk,l−ρk,l−1)μk/λ
P∗
k for l ∈ [1,Mk]

and q∗k,Mk+1 =∞. �

3.2. Optimal Transmit-Powers

It is clear from (1) that the rate constraints affect to τ (·) and Q. In
each iteration of our coordinate descent algorithm, we will descend
the global objective within the feasible set. This guarantees that in
this step we always start with a pair ofQ and τ (·) already satisfying
rate constraints to nd the optimal π. Therefore, given theseQ and

2Proofs for all Propositions can be found in [7].

τ (·), nding the optimal π reduces to solve⎧⎨
⎩
minπ

∑K

k=1 μk
∑Mk

l=1 πk,l
∫
Qk,l

τk(h)dF (h)

s.t. ∀k,
∑Mk

l=1

ρk,l

R̄k

∫
Qk,l

τk(h)εk,l(hkπk,l)dF (h) ≤ ε̄k.

(2)
Let us de neAk,l :=

∫
Qk,l

τk(h)dF (h). Since the functions εk,l(x)
are convex, (2) is a convex optimization problem. Its solution can be
analytically obtained as follows.

Proposition 2 Given positives νπ∗k ,∀k, and with ε′k,l(γ) denoting the
rst derivative of εk,l(γ), the optimal π∗

k,l is the unique value such
that

∫
Qk,l

τk(h)hkε
′
k,l(hkπ

∗
k,l)dF (h) = −

μkR̄kAk,l

ρk,lν
π∗

k

, or π∗
k,l = 0.

And ∀k ∈ [1,K], each Lagrange multiplier νπ∗k is determined by
satisfying the constraint

∑Mk

l=1 ρk,l
∫
Qk,l

τk(h)εk,l(hkπ
∗
k,l)dF (h)/

R̄k = ε̄k. �

Notice that given τk(h), users are decoupled. Solving (2) is equiv-
alent to solving K small problems. Given νπ∗k and monotonically
decreasing εk,l(γ), the solution to rst equation of Proposition 2 is
unique for π∗

k,l > 0 and we can use a one-dimensional. Then we
can use another one-dimensional search to solve for νπ∗k in the BER
constraint. And the optimal transmit-powers π∗ are in turn obtained.

3.3. Optimal Quantization Regions

Given π and τ (·), users are decoupled as in Proposition 2. To nd
the optimalQ (fading regions), we need to solve ∀k,⎧⎪⎪⎨

⎪⎪⎩
min

{Qk,l}
Mk
k=1

μk
∑Mk

l=1 πk,l
∫
Qk,l

τk(h)dF (h)

s.t.
∑Mk

l=1 ρk,l
∫
Qk,l

τk(h)dF (h) ≥ R̄k;∑Mk

l=1

ρk,l

R̄k

∫
Qk,l

τk(h)εk,l(hkπk,l)dF (h) ≤ ε̄k.

(3)

Similar to a constrained vector quantization [6], we derive:

Proposition 3 Given non-negative λq∗k and ν
q∗
k , we de ne ψk,l(hk) :=

μkπk,l − λq∗k ρk,l + νq∗k ρk,lεk,l(πk,lq)/R̄k for l ∈ [1,Mk] and
ψk,0(hk) = 0. Then we can obtain the optimal Q∗

k,l as: ∀l ∈
[1,Mk],Q∗

k,l = {h : ψk,l(hk) ≤ ψk,j(hk); ∀j �= l, j ∈ [0,Mk]}.
Moreover, λq∗k and νq∗k are determined by satisfying slackness con-
ditions λq∗k × (

∑Mk

l=1 ρk,l
∫
Q∗

k,l

τk(h)dF (h)− R̄k) = 0 and νq∗k ×

(
∑Mk

l=1

ρk,l

R̄k

∫
Q∗

k,l

τk(h)εk,l(hkπk,l)dF (h)− ε̄k) = 0. �

To obtain the optimal Q∗
k,l, we need to nd λq∗k and νq∗k . Since

(3) is not a convex problem, we resort to a two-dimensional search.
We can start the search in an exhaustive manner. However, once
we have a pair of λq∗k and νq∗k satisfying the constraints, we stop
the search and return these values. After obtaining λq∗k and νq∗k , ∀k
(usingK two-dimensional searches), we in turn determineQ∗.

3.4. Optimal Time Allocation

WithQ and π given, nding the optimal time allocation policy is to
solve⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

minτ (·)

∑K

k=1 μk
∑Mk

l=1 πk,l
∫
Qk,l

τk(h)dF (h)

s.t. ∀h,
∑K

k=1 τk(h) ≤ 1;

∀k,
∑Mk

l=1 ρk,l
∫
Qk,l

τk(h)dF (h) ≥ R̄k;∑Mk

l=1

ρk,l

R̄k

∫
Qk,l

τk(h)εk,l(hkπk,l)dF (h) ≤ ε̄k.

(4)
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Proposition 4 Given λ
τ∗ := [λτ∗1 , . . . , λτ∗K ]T ≥ 0 and ν

τ∗ :=

[ντ∗1 , . . . , ντ∗K ]T ≥ 0, for each fading state h, let lk(h) denote the
mode index for user k such that h ∈ Qk,lk(h), and de ne ϕ̃k(h) :=
μkπk,lk(h) − λτ∗k ρk,lk(h) + ντ∗k ρk,lk(h)εk,lk(h)

(
hkπk,lk(h)

)
/R̄k.

Then the optimal solution τ
∗(·) to (4) can be obtained as follows:

1. ∀k ∈ [1, K], ϕ̃k(h) ≥ 0, then ∀k, τ∗k (h) = 0.
2. If {ϕ̃k(h)}Kk=1 have a single minimum ϕ̃i(h) < 0, then τ∗i (h) =
1 and ∀k �= i, k ∈ [1, K], τ∗k (h) = 0.
3. If {ϕ̃k(h)}Kk=1 have multiple minima {ϕ̃ij (h)}

J
j=1 < 0, then

τ∗ij (h) = τ∗j with any
∑J

j=1 τ
∗
j = 1, and ∀k �= ij , k ∈ [1, K],

τ∗k (h) = 0.
Moreover, λτ∗k and ντ∗k should satisfy the complementary slackness
conditions ∀k ∈ [1, K] similar to λq∗k and ν

q∗
k in Proposition 3. �

As with P-CSI, Proposition 4 asserts that our optimal time allo-
cation strategies are “greedy”. Function ϕ̃k(h) can be viewed as a
channel cost for user k. Then for each time block, we should only
allow the user with the “best” channel to transmit. When there are
multiple users with “best” channels, arbitrary time division among
them suf ces. For cases where ϕ̃k(h) ≥ 0 ∀k ∈ [1, K], we should
let all users to defer. To obtain the optimal τ ∗(·), we need to nd
λ
τ∗ and ν

τ∗. Instead of a 2K-dimensional exhaustive search, we
accomplish this by a sub-gradient ascend algorithm. First, it follows
readily that the Lagrange dual function g(λτ ,ντ ) for (4) is given by

g(λτ ,ντ ) =

K∑
k=1

μk

Mk∑
l=1

πk,l

∫
Qk,l

τk(λ
τ , ντ ,h)dF (h)

−

K∑
k=1

λτk

(
Mk∑
l=1

ρk,l

∫
Qk,l

τk(λ
τ ,ντ ,h)dF (h)− R̄k

)

+
K∑
k=1

ντk

(
Mk∑
l=1

ρk,l
R̄k

∫
Qk,l

τk(λ
τ ,ντ ,h)εk,l(hkπk,l)dF (h)− ε̄k

)

where for a given (λτ ,ντ ), the time allocation τk(λτ ,ντ ,h) is pro-
vided by Proposition 4 (without considering the rate and BER con-
straints). The dual of (4) is

max
λτ ,ντ

g(λτ ,ντ ), s.t. λ
τ ≥ 0,ντ ≥ 0. (5)

Since (4) is a convex problem, the duality gap is zero; and thus
(λτ∗,ντ∗) = arg maxλτ≥0,ντ≥0 g(λτ ,ντ ). Therefore, we
can obtain (λτ∗,ντ∗) via the following sub-gradient projection al-
gorithm. As our problem is convex, the convergence of our sub-
gradient projection algorithm is guaranteed [5]. Once λ

τ∗ and ν
τ∗

are calculated, the time allocation policy in Proposition 4 is in turn
determined.

Sub-gradient Algorithm: [T0] Generate an arbitrary positive
vector (λτ (0),ντ (0)). Select tolerance ε > 0, calculate g(λτ (0),
ν
τ (0)) and let the iteration index t = 1.
[T1] Numerically evaluate the partial derivativesΔλτk :=

∂g(λτ ,ντ )
∂λτ

k

and Δντk := ∂g(λτ ,ντ )
∂ντ

k

∀k at (λτ (t − 1),ντ (t − 1)). Choose

a step size δ and then update λτk(t) = [λτk(t− 1) + δΔλτk]
+ and

ντk (t) = [ντk (t− 1) + δΔντk ]
+.

[T2] Calculate the objective g(λτ (t),ντ (t)) using (λτ (t),ντ (t)).

If g(λ
τ (t),ντ (t))−g(λτ (t−1),ντ (t−1))

g(λτ (t),ντ (t))
< ε, return (λτ (t),ντ (t)) and

stop. Otherwise, increase t by 1 and go to T1)).

3.5. Joint Quantization and Resource Allocation Algorithm

For the global objective J :=
∑K

k=1 μk
∑Mk

l=1 πk,l
∫
Qk,l

τk(h)dF (h),

we propose based on Propositions 1-4 the following joint quantiza-
tion and resource allocation (JQRA) algorithm:

JQRA Algorithm: [J0] Produce initial τ (0)(·) and Q(0) from
[3, Theorem 6] and Proposition 1. Select tolerance ε > 0, initialize
objective at J(0) =∞ and set the iteration index t = 1.
[J1] τ

(t−1)(·),Q(t−1) → π
(t): Given τ

(t−1)(·) and Q(t−1), ob-
tain π

(t) from Proposition 2.
[J2] π

(t), τ (t−1)(·)→ Q(t): Given π
(t) and τ

(t−1)(·), obtainQ(t)

from Proposition 3.
[J3] Q(t),π(t) → τ

(t)(·): GivenQ(t) andπ
(t), obtain τ

(t)(·) from
Proposition 4.
[J4] Stopping criterion: Calculate J(t) usingQ(t), π(t) and τ

(t)(·).
If (J(t−1) − J(t))/J(t) < ε, returnQ(t), π(t) and τ

(t)(·) and stop.
Otherwise, t = t+ 1 and go to J1).

Since the global objective J is decreasing in each step, it is easy
to see that as t→∞, the JQRA algorithm converges.

3.6. Optimal Feedback Bits

JQRA provides a quantizer design which is computed off-line. After
that, the AP quantizes each fading state and feeds back the user-
AMC-mode selections per time block. Then users defer or transmit
with the indicated AMC modes.

Proposition 5 Given Q∗, π∗, λτ∗ and ν
τ∗ from JQRA, ∀h, the AP

sends to the users the codeword c∗(h) = [k∗(h); l∗(h)] which en-
codes the optimal resource allocation for the current fading state, so
that: (1) k∗(h) = argkmin{ϕ̃k(h,Q

∗,π∗,λτ∗,ντ∗)}Kk=1 (pick
any k∗ if multiple minima occur), where ϕ̃k(h,Q∗,π∗,λτ∗,ντ∗) :=

μkπ
∗
k,lk(h) − λ

τ∗
k ρk,lk(h) + ντ∗k ρk,lk(h)εk,lk(h)

(
hkπ

∗
k,lk(h)

)
/R̄k;

(2) l∗(h) = { l; s.t. h ∈ Qk∗(h),l, l = 1, . . . ,Mk}. When
the users receive the broadcasted c∗(h), the optimal multiple ac-
cess consists of the k∗th user transmitting its l∗th mode using power
π∗
k∗(h),l∗(h) while the rest of the users remaining inactive. �

This implies the optimal resource allocation policy can be ob-
tained by letting only one user to transmit per fading state. In other
words, over all possible strategies, the optimal solution only allows
to activate one AMCmode of one user per block. Therefore, we only
need 	log2(

∑K

k=1Mk + 1)
 feedback bits to index the different
user-AMC-mode combinations and the case of all users deferring.
Consider a system with 85-170 users, each supporting six different
AMC modes. To implement the derived resource allocation, in this
case the access point only needs to feed back 9-10 bits per fading
state. This is certainly affordable by most practical systems.

4. NUMERICAL RESULTS

In this section, we present numerical results of JQRA for a 2-user
Rayleigh at-fading TDMA channel. The system bandwidth isB =

III  119



Table 1. Power weighted cost (measured in dBw) PHEUR for Q-
CSIT heuristic approach, P JQRA for Q-CSIT JQRA, and PPCSIT
for P-CSIT solution [3] in different test cases. (Reference case:
μ1 = 1/2, μ2 = 1/2, R̄1 = R̄2 = 100 kpbs, γ̄1 = γ̄2 = 0 dB.
In other cases, indicated changes are made while other parameters
remaining the same as reference case.)

Variation PHEUR PJQRA PPCSIT
Reference Case 15.23 8.79 8.21

μ1 = 2/3, μ2 = 1/3 15.22 8.76 8.03
μ1 = 6/7, μ2 = 1/7 15.08 8.51 7.98
γ̄1 = 3, γ̄2 = 0 14.83 7.71 7.15

R̄1 = 100, R̄2 = 50 13.01 6.59 6.22

0 2 4 6 8 10
0

1

2

3

4

5

6

7

8

9

10

U
se

r
2

C
h
a
n
n
el

P
o
w
er

G
a
in

[h
2
/
(N

0
B

)]

User 1 Channel Power Gain [h1/(N0B)]

• user 1 ×user 2

Fig. 1. Optimal time allocation policy and quantization regions ob-
tained by the JQRA algorithm. Regions are indicated using different
shades and quantization thresholds are represented with bold lines
(μ1 = 2/3, μ2 = 1/3, R̄1 = R̄2 = 100 kpbs, γ̄1 = γ̄2 = 0 dB).

100 KHz, and the AWGN has two-sided power spectral density N0

Watts/Hz. Fading coef cients hk , have mean h̄k and are assumed in-
dependent. The average signal-to-noise ratio (SNR) is γ̄k = h̄k

(N0B)
.

The transmission rates per symbol of AMCmodes are: ρk,l =1, 3, 5

bits/sym. The corresponding BER can be approximated as εk,l(γ)
= 0.2 exp(−γ/(2ρk,l − 1); and we set ε̄1 = ε̄2 = 10−3.

Supposing P-CSI at transmitters (P-CSIT) or Q-CSIT, we test
the P-CSIT based resource allocation [3] and our Q-CSIT based
JQRA. For comparison, we also test a widely employed heuristic Q-
CSIT based approach, where each user is assigned equal time frac-
tion and transmits with equal power for all its AMCmodes per block.
The AP selects for each user an AMCmode so that the instantaneous
BER is less than or equal to the required level. With such a quan-
tization, each user’s transmit-power is then selected to ensure that
its rate constraint is satis ed. Numerical results describing the be-
havior of our algorithm in different cases are summarized in Table I.
We observe that: i) JQRA clearly outperforms the heuristic Q-CSIT
approach (yielding around 6 dB savings); ii) the gap between JQRA
and P-CSIT solution is very small. Since the P-CSIT solution lower
bounds all Q-CSIT based approaches, this indicates that our coordi-
nate descend algorithms are near-optimal.

To gain more insight, let us take a closer look at our joint quan-
tization and resource allocation solution when μ1/μ2 = 2. For
this case the optimum powers (measured in dBw) are: π∗

1,1 = 8.6,
π∗

1,2 = 13.2, π∗
1,3 = 15.6, π∗

2,1 = 9.0, π∗
2,2 = 13.8, and π2,3 =

16.3. This indicates that for the simulated scenarios, the water- lling
principles still hold in the Q-CSIT based optimal power loading, as
in the P-CSIT case; i.e., when the channel is better, we use a higher
rate with more transmit-power. The quantization regions and time
allocation are depicted in Fig. 1 that reveals optimal quantization
regions {{Q∗

k,l}
3
l=1}

2
k=1 are non-overlapping consecutive intervals

which can be determined by a set of thresholds {q∗k,l}, which are
represented with bold lines. This implies that a simple quantization-
region based time allocation approach may provide a good approxi-
mation to the optimal policy. Numerical results also reveal that 5-10
outer iterations of JQRA suf ce to converge to the optimal solution.

5. CONCLUSIONS

Based on Q-CSI, we derived an energy-ef cient JQRA strategy for
TDMA fading channels which relies on coordinate descent princi-
ples to assemble the different sub-solutions of the decoupled sub-
problems to solve the main problem. Numerical results showed that
with Q-CSIT only available, our JQRA algorithm achieve energy ef-
ciency surprisingly close to that obtained with P-CSIT, and yield
large energy-savings compared to a widely used Q-CSIT approach.
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