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ABSTRACT

Bit-interleaved coded-modulation (BICM) with iterative demodula-
tion and decoding (IDD) is a popular architecture for the develop-
ment of practical communication schemes that operate at rates close
to capacity. In multiple-input multiple-output (MIMO) BICM-IDD
schemes, a key computational bottleneck is the demodulation step;
that is, the extraction of “soft” information about the transmitted
bits from the channel output. The concept of list-based demodu-
lation provides a convenient framework for managing the trade-off
between accuracy and computational cost in the extraction of this
soft information, especially when tree-search techniques are used to
construct the list. In this paper, we will propose several list-based de-
modulators based on modifications of the stack algorithm for search-
ing a tree. The modifications partition the stack in ways that enable
efficient and effective searching of the tree from the perspective of
list-based demodulation. Simulation results show that the proposed
demodulators achieve desirable trade-offs between complexity and
performance.

Index Terms—MIMO demodulation, Iterative demodulation
and decoding, Stack algorithm.

1. INTRODUCTION

Wireless communication systems with multiple antennas at the
transmitter and receiver are a key component in the development of
wireless communication standards as they provide the potential for
reliable communication at data rates that are substantially larger than
the corresponding single antenna system [1, 2]. However, the com-
putational effort required for optimal detection of multiple-input,
multiple-output (MIMO) schemes that operate at such high spec-
tral efficiencies is often beyond the capabilities of the envisioned
communication devices, and hence there has been considerable in-
terest in the development of transceivers that balance the competing
demands of rate and computational efficiency. A popular transmis-
sion strategy that enables considerable flexibility in the selection of
an appropriate balance is a MIMO version (e.g., [3]) of the bit in-
terleaved coded modulation strategy (BICM, e.g., [4]); see Fig. 1.
Given the complexity of optimal decoding, the standard reception
strategy is to adopt a bit-wise iterative “soft” demodulation and de-
coding (IDD) approach (often called the “Turbo principle”) that at-
tempts to maximize the a posteriori probability of each bit in the
message. Although this iterative demodulation and decoding strat-
egy offers a substantial reduction in computational cost, the demod-
ulation step, which involves the extraction of a sufficiently accurate
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Fig. 1. MIMO BICM-IDD transceiver.

approximation of the likelihood of each bit from the output of the
MIMO channel, remains a substantial computational burden. The
use of list-based techniques to manage this burden is the core topic
of this paper. (Other approaches to managing this burden include
those based on linear equalization, e.g., [5], and those based on soft
interference cancellation techniques, e.g, [6].)

The principle of list-based demodulation (e.g., [3, 7]) is to ef-
ficiently obtain a list of the candidate bit-vectors that generate the
dominant components of the soft information, and then to compen-
sate the soft information for components that may be missing. In
this paper, we emphasize the tree-search interpretation of MIMO de-
modulation; e.g., [8, 9]. In particular, we provide modified versions
of the stack algorithm (e.g., [9]) for searching the tree. In addition
to the use of a modified path metric that includes prior information
(c.f., [10]), the modifications involve the partitioning of the stack
so that there is one stack per layer of the tree. Hence, our search
algorithms have an additional degree of freedom — the order in
which the stacks are explored. As we will show, the combination
of this extra degree of freedom and some simple termination criteria
offers considerable control over the trade-off between performance
and complexity in MIMO demodulation.

2. SYSTEMMODEL

We will consider the standard MIMO BICM-IDD transceiver struc-
ture [3] illustrated in Fig. 1. Since the focus of the paper is on
the MIMO demodulation task, we will choose conventional compo-
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nents for the rest of the system. In particular, we consider a generic
MIMO channel in which the received signal vector can be written as
y = Hx + v, where H is an Nr × Nt matrix of channel gains, x
is the transmitted signal vector, and v is a vector of noise samples.
We consider communication schemes in which x is a linear function
of a vector s ofK ≤ Nt channel symbols, each of which is selected
from a scalar constellation C of size 2M by mapping a sub-block of
M bits from the vector of interleaved encoded bits to C. Therefore,
the received signal vector can be written as

y = Hs(b) + v, (1)

whereH incorporates the linear mapping of s to x and b is a block
of MK interleaved encoded bits. The encoded bits are generated
using a standard binary encoder, such as a convolutional, turbo or
LDPC encoder.
At the receiver, the role of the (coherent) soft demodulator is to

extract information regarding the elements of b, bi, from the channel
measurement y, given knowledge ofH and, at the second and subse-
quent iterations, prior information on the bit probabilities provided
by the decoder. Since bi is binary, the information to be extracted
by the demodulator can be succinctly captured in the log-likelihood
ratio (LLR):

LDi � L(bi|y,H) = log
p(bi = 1|y,H)

p(bi = 0|y,H)

= log
ΣLi,1

p(y|b,H)p(b)

ΣLi,0
p(y|b,H)p(b)

, (2)

where L is the list of all the binary vectors b, Li,1 is the sub-list
of vectors that have 1 at the ith bit position, and Li,0 is defined
analogously. If we model each element of the noise vector v in (1)
by an i.i.d. zero-mean circular complex Gaussian random variable
of variance σ2, per real dimension, we have that:

p(y|b,H) ∝ e
−‖y−Hs(b)‖2

2
/(2σ2)

.

Furthermore, if the interleaver in the transmitter portion of Fig. 1 is
designed well enough, the simplifying assumption that the elements
of b are independent is quite mild; i.e.,

p(b) ≈
QMK

k=1 p(bk) = e
PMK

k=1
log p(bk).

In that case, the negative of the logarithm of the summand in the
numerator and denominator of (2) is (c.f., [10])

D(b) � ‖y −Hs(b)‖22 − 2σ
2PMK

k=1 log p(bk). (3)

Therefore, the summations in (2) can be written as summations of
e−D(b), with b being selected from Li,1 or Li,0, respectively. How-
ever, as each list contains 2MK−1 terms, there has been considerable
interest in schemes that enable the approximation of (2) with lower
computational cost.

3. LIST-BASED MIMO DEMODULATION

Given the rapid growth of the computational cost of (2) withMK,
exact MIMO demodulation is feasible only in rather low rate sce-
narios. The principle behind list-based demodulation schemes is to
reduce the computational cost of (2) by replacing the list L with a

reduced-size list L̂ containing the dominant components in the sum-
mations. The problem of finding the dominant components corre-
sponds to finding binary vectors b that yield small values for (3).
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Fig. 2. An example of a 2M -ary tree search withM = 2 andK = 3.

The implementation of that search is significantly simplified when
the QR decomposition is used to make the implicit tree structure of
the MIMO demodulation problem explicit; e.g., [3, 7–10]. In par-
ticular, if we letHE = QR denote the QR decomposition ofHE,
whereE is a column permutation matrix that determines the arrange-
ment of the symbols in the tree, and define ỹ = QT y, ṽ = QT v,
s̃ = ET s, andRj to be the j’th row ofR, then (3) can be rewritten
as:

D(b) = ‖ỹ −Rs̃‖22 − 2σ
2PMK

k=1 log p(bk)

=
PK−1

j=0 (ỹK−j −RK−j s̃)
2 − 2σ2 log p(s̃K−j), (4)

where p(s̃i) =
Q

k p(bk) with the product being over only those bits
that index the symbol s̃i, and we have dropped the explicit depen-
dence of s on b for simplicity. In (4), the j’th summand depends
only on symbols j to K, and hence the inherent tree structure is ex-
posed. Indeed, if the root node of the tree is called layer zero, the
child nodes of the nodes at layer j are indexed by the bits that are
mapped to s̃K−j . Therefore, the tree is a 2M -ary tree, whereM is
the number of bits per (scalar) symbol. See Fig. 2 for an example.
For later convenience, we observe that the path metric for a node at
level J is the sum of the first J terms in (4).

Although the list construction problem has been reduced to a
tree-search problem, direct application of conventional tree-search
algorithms is complicated by the fact that we are looking for a num-
ber of leaf nodes with small values of (4), rather than being con-
cerned only with the leaf node with the smallest value for (4). The
algorithms that we will employ are modifications of the stack algo-
rithm; e.g., [7, 9]. The stack algorithm is a “best first search” algo-
rithm, in the sense that all the “exposed” nodes of the tree are stored
in a stack, and at each step the algorithm explores the child nodes
of the member of the stack with the smallest path metric. As a re-
sult, the first leaf node that the algorithm would select for expansion
corresponds to the bit-vector with the smallest value for (4). How-
ever, the stack algorithm may partially explore many branches of the
tree without generating many leaf nodes with small values for (4).
As a result, it may expend a large amount of computational effort to
find only a few of the dominant leaf nodes. The goal of the proposed
modified stack algorithm is to obtain a larger set of the dominant leaf
nodes with lower computational cost. In the proposed algorithm, the
(global) stack is partitioned into separate stacks, one for each layer
of the tree. At each step of the algorithm a layer is selected and the
node in that layer’s stack with the smallest path metric is expanded.
Therefore, we will call these algorithms Best First Search per Layer
(BFSPL) algorithms. In addition to the search strategy, the perfor-
mance of a tree-search-based list demodulator also depends on how
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Table 1. Proposed List Construction Algorithm

Input data: y; H; p(bk); M ; a bound on the list size, L; a bound on the
number of nodes visited,N .

Variables: E; one stack per layer, Sk; the search order of the stacks, t; a
bound on the path metric, B

Output: the list, L̂
Preparatory computations:

1. Using y,H, and p(sk), select E and t. Perform the QR decomposi-
tion ofHE.

Preliminary step: Greedy depth rst search

2. Generate the child nodes of the root node and place them in S1. Set
k = 1.

3. While k ≤ K − 1, remove from Sk the node with the smallest
metric. Generate all that node’s child nodes and place them in Sk+1.
Increment k.

4. (k = K) Select the node from SK with the smallest metric, and
place it in the list L̂. SetB to the path metric of this node. Clear SK .

Bounded best rst search per layer

5. Examine the stacks in the order imposed by t and select the first non-
empty stack. If all stacks are empty, terminate. Otherwise, set k to
the index of the first non-empty stack.

6. Select the node in Sk with the smallest path metric. If that metric
is greater than B, clear Sk , and return to 5. Otherwise, remove this
node from Sk , and generate all its child nodes.

a. If k < K, place the child nodes into Sk+1. If the number of
nodes visited is < N , increment k and return to 6.

b. If k = K, put those child nodes with metrics ≤ B into L̂. If the

number of nodes visited is < N and |L̂| < L, increment k and
return to 5.

the search is terminated. We will terminate the search if a prespec-
ified number of leaf nodes has been obtained, or if a prespecified
number of nodes in the tree have been visited. The bound on the list
size enables us to bound the complexity of computing the list ver-
sion of (2), while the bound on the number of nodes visited limits
the computational cost of the tree search.

In addition to these controls, we may also wish to control the
“breadth” of the tree search, as this will help to focus the compu-
tational effort on the generation of dominant leaf nodes. One way
in which this can be done is by performing a preliminary step that
generates one candidate for the list and computes its metric. Since
each summand in (4) is non-negative, if a given node in the tree has
a path metric that is greater than that of the leaf node generated in
the preliminary step, then the contribution to (2) of each of the leaf
nodes lying “below” this node will be less than that of the leaf node
generated in the preliminary step. This suggests that one can signif-
icantly reduce the search complexity without incurring a significant
performance loss by cutting the tree at this node, and we will do so
in our algorithm. In the preliminary step we will use a greedy depth
first search, in which the layers are expanded sequentially, with the
child node with the smallest metric being selected at each step.

A formal statement of the proposed algorithm is provided in
Tab. 1. Some of the candidate orderings for the symbols, E, and the
searching of the stacks, t, are described in the subsections below.

3.1. BFSPL with VBLAST symbol ordering.

In the first iteration, no a’priori information is available, and hence
the leaf node found in the preliminary step is the same as the first
leaf node found in the method in [8]. As suggested in [8], a natural
choice for the ordering of the symbols is the V-BLAST ordering [11],
in which the symbol to be expanded at each step is the one with the
largest SINR. In the generation of the list, it is often fruitful to ex-
amine those symbols with low SINR in the greatest detail. Hence,
an appropriate ordering of the stacks is [K, K − 1, . . . , 1]. In sub-
sequent iterations, when a’priori information is available from the
decoder, we will retain the same orderings. While this means that
we do not have to perform additional QR decompositions, it does
mean that, the ordering of the searches is determined by the channel
and noise realizations and that the decoder exerts no influence over
those orderings.

3.2. Symbol ordering based on a’priori information.

The principle of the V-BLAST ordering is to place the symbols about
which we are most confident at the top of the tree. When we have
a’priori information (i.e., at the second and subsequent iterations
of the receiver), we can choose to use the prior probabilities as the
measure of confidence, instead of the SINR. In particular, if we let
P (s∗j ) denote the largest of the prior probabilities for symbol j, we
can arrange the symbols in descending order of P (s∗j ). (Since there
is no a’priori information at the first iteration, we will use the V-
BLAST ordering for that iteration.) As the deep nodes in the tree
represent the symbols about which we are least confident, we will
use the same stack ordering as the first method.

3.3. Stack ordering based on a’priori information.

A problem with the previous method is that at each demodulation
iteration the a’priori information is updated and the tree may be re-
ordered. When that occurs, E changes and we will have to repeat
the QR decomposition. This will increase the complexity for sys-
tems with large values for K. An alternative is to sort the stacks,
instead of the symbols. That is, we retain the V-BLAST tree order-
ing, and simply order the search of the stacks in increasing order of
P (s∗j ).

3.4. Straight ordering of stacks.

In this approach, we order the tree according to the V-BLAST order-
ing and re-order the search of the stacks as [1, 2, . . . , K]. In some
scenarios, this will increase the richness of the list membership and
hence improve the performance of the demodulator.

4. LLR COMPUTATION

In order to reduce the complexity of computing (2), we will use the

BFSPL strategies to generate a reduced-size list L̂ and we will use

the consequent sub-lists L̂i,0, L̂i,1 to replace the complete sub-lists
Li,0, Li,1 in (2), respectively. However, there may be bit positions

for which L̂i,0 or L̂i,1 is empty, and in such scenarios the list ap-
proximation of (2) fails. In order to avoid those scenarios, one can
“enrich” the list by adding all those bit vectors that are within a pre-

set Hamming distance of at least one member of the list L̂; see,

e.g., [12]. We will let L̂′ denote the enriched list. In our simula-
tion studies, we will select a Hamming distance of 1, and hence the
enriched list is generated by simply flipping one bit at a time of each
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Fig. 3. SNR-Complexity trade-off for different search methods.

list member. In that case, if the original list L̂ has L members, then
the enriched list has at most L(KM + 1) members. However, our
simulation results indicate that many of the bit-flipped vectors are al-

ready members of L̂, and hence L′ = |L̂′| is typically much smaller
than L(KM + 1).
Once the enriched list has been formed, the LLR in (2) can be

approximated by performing the summations over the sub-lists L̂′i,1
and L̂′i,0, respectively. However, there may be cases in which these
sub-lists are of different lengths. That can make the approximation
of the LLR unbalanced and can cause under or over estimation. A
well known strategy to mitigate that effect is to approximate the LLR
using the dominant bit-vector in each sublist — a strategy that is
called the max-log approximation [3]. A common final safe-guard
against errors in the approximation of the LLR is to clip the approx-
imated LLRs to a certain range [13]. In our simulation studies, the
LLRs will be clipped to the interval [−5, 5].

5. SIMULATION RESULTS

In order to evaluate the performance and computational cost of var-
ious demodulation strategies, we consider a MIMO system with 4
transmit and 4 receive antennas and a Rayleigh block-fading chan-
nel with channel gains that are i.i.d. standard complex Gaussian ran-
dom variables. We employ a rate 1

2
parallel concatenated turbo code

with block length 8192 as the outer code. The component codes
of the turbo code are both (5, 7) recursive systematic convolutional
codes. The (different) interleavers in the turbo code and in the BICM
transmitter were selected from randomly generated candidates. The
simple V-BLAST scheme [11] with 16-QAM symbols was adopted
at the transmitter, and the conventional BCJR algorithm was used
as the decoder of the constituent convolutional codes of the turbo
code. Following [7], we perform 8 turbo decoding iterations before
we pass the soft information back to the demodulator.

In Fig. 3, we have provided a performance versus complexity
comparison of a variety of our proposed demodulators and that of the
stack algorithm of [7]. Performance is measured in terms of the SNR
required to achieve a bit error rate of 10−4 after four demodulation-
decoding iterations and as a proxy for complexity we will add the

total of the number of nodes visited in the tree to K = 4 times the
size of the enriched list, L′ = |L̂′|. This proxy accounts for the cost
of the tree search and the cost of computing the list version of (2),
in a reliable and repeatable way. However, it does not include the
additional sorting costs associated with the standard implementation
of the stack algorithm that has an active constraint on the stack size.
From Fig. 3, it is apparent that the instances of the proposed

tree-search algorithm require substantially less computational effort
than the stack algorithm. Furthermore, by controlling the bounds on
the list size (dash-dot lines in the figure) or the maximum number
of nodes visited (solid lines in the figure) one can adjust the trade-
off between performance and complexity of these methods. Of these
two bounding schemes, it appears that bounding the number of nodes
provides a better trade-off. Also, for each bounding scheme, the
straight stack ordering (shown with symbol �) appears to provide
a superior trade-off to that of the other ordering methods. In sum-
mary, it appears that a combination of the straight ordering of the
stacks and a complexity limit based on the number of visited nodes
provides the best performance-complexity trade-off among the con-
sidered schemes.
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