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ABSTRACT

Diversity techniques are important in combating the deleterious ef-
fects of channel fading. To enjoy diversity, both transmitter and re-
ceiver have to be designed appropriately. Many existing designs have
exploited different avors of diversity by employing maximum like-
lihood (ML) or near-ML detectors at the receiver, which is of high
complexity. On the other hand, empirical results have shown that lin-
ear equalizers (LEs) offer inferior performance but come with low
complexity. Unfortunately, the diversity collected by general LEs
has not been quanti ed, which reduces the attraction of LEs in the-
oretical and practical aspects. In this paper, we reveal a fundamen-
tal yet simple condition that determines whether LEs can achieve
the same diversity order as an ML equalizer does. The condition is
based on the orthogonal de ciency (od) of channel matrix. Based on
the distribution of the channel od, we propose a framework of hy-
brid equalizers which guarantees maximum diversity while trading
off complexity for coding gains. The theoretical ndings are veri ed
by simulation results.

Index Terms— Diversity, fading channels, linear systems, lin-
ear equalizers, orthogonality de ciency

1. INTRODUCTION

A major challenge in designing wireless systems is to mitigate the
fading propagation effects of the wireless channels given the pre-
scribed power, bandwidth, and complexity constraints. To cope with
the deleterious fading effects on the system performance, diversity-
enriched transmitters and receivers have well-appreciated merits [9].
The higher the collected diversity is, the smaller the error probability
is at high signal-to-noise ratio (SNR). Diversity itself is an inherent
property from fading channels. Different channels provide different
diversity avors, e.g., frequency-selective channels provide multi-
path diversity [4], multi-antenna channels provide spatial diversity
[7].

To enjoy the diversity from fading channels, two conditions are
necessary. One condition is that we have to design the transmit-
ter properly so that the diversity is enabled. This has been well
studied in the literature. For example, the performance of uncoded
OFDM does not have any diversity, but precoded OFDM enables
multipath diversity [4]. Another condition is that the receiver has
to be able to collect the diversity. Most of the existing diversity-
enabled schemes require maximum-likelihood equalizers (MLEs) or
near-ML decoders at the receiver to collect diversity [4]. Recently,
lattice-reduction aided LEs have been proposed which can also col-
lect full diversity [6, 11].

This material is based on work supported by the U.S. Army Research
Laboratory and the U.S. Army Research Of ce under grant no. W911NF-
06-1-0090 and through collaborative participation in the Collaborative Tech-
nology Alliance for Communications & Networks sponsored by the U.S.
Army Research Laboratory under Cooperative Agreement DAAD19-01-2-
0011. The U.S. Government is authorized to reproduce and distribute reprints
for Government purposes notwithstanding any copyright notation thereon.

Decoding complexity is another major gure of merit to eval-
uate a receiver. Although MLE enjoys the maximum diversity, its
exponential decoding complexity makes itself infeasible for certain
practical systems. Some near-ML schemes (e.g., sphere-decoding
[3]) have been used to reduce the decoding complexity. However,
at low SNR or when large decoding blocks and/or high signal con-
stellations are employed, the complexity of near-ML schemes is still
high. To further reduce the complexity, when the system model is
linear, one may apply linear equalizers (LEs). Although it is well-
known that LEs have inferior performance relative to that of (near-)
MLE, unlike MLE, the diversity order of LEs has not been quanti ed
in general. For speci c cases, it has been shown that LEs cannot col-
lect maximum diversity for MIMO V-BLAST systems [11]. It has
also been shown that LEs collect full diversity for precoded OFDM
systems in [8] and orthogonal space-time block coding schemes in
[7]. Therefore, a fundamental question is what determines the diver-
sity order of LEs if they exist.

In this paper, by introducing a metric, orthogonality de ciency
(od) of the channel matrix, we reveal the fundamental condition with
which LEs collect the same diversity as MLE does. Based on our
analysis on the distribution of the channel od, we propose a frame-
work to design hybrid equalizers with maximum diversity while also
enabling coding gain and complexity trade-off.

2. SYSTEMMODEL AND PROBLEM STATEMENT
Consider general linear block transmissions

y = Hs + w, (1)

whereH is anM ×N complex random matrix with zero mean, the
N × 1 vector s consists of the information symbols, y is theM × 1
received vector, and w is complex additive white Gaussian noise
with variance σ2

w. We assume a quasi-static environment that the
channel coef cients are time-invariant during a certain block which
is greater than a symbol period and change independently from block
to block, and they are known to the receiver. Note that the channel
matrix H is general enough to represent a number of cases, e.g.,
multi-antenna MIMO [7], precoded OFDM [4], and single-carrier
Toeplitz channels [8]. Given the model in (1), there are various ways
to decode s from the observation y. Here, we brie y summarize two
conventional LEs.

The zero-forcing (ZF) detector for the model in (1) is given as

xzf = H †y = s + H†w = s + η, (2)

where H† = (HHH)−1HH denotes the Moore-Penrose pseudo-
inverse of H and η := H†w. A quantization step is then used to
map each entry of xzf to the symbol alphabet S .

Another often used LE is the linear minimum mean-square error
(MMSE) detector, which is given as

xmmse =
�
HHH + σ2

wIN

�−1
HHy. (3)

Here, we notice that, with the de nition of an extended system:
H̄ = [HT σwIN ]T , ȳ = [yT

01×N ]T ; the MMSE equalizer in
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(3) can be rewritten as xmmse = H̄
†
ȳ. Therefore, the MMSE

equalizer has the same form as the ZF equalizer in (2) with respect
to this extended system. The analysis in the following sections is
based on the ZF equalizer in (2), and thus can be extended to MMSE
equalizer accordingly.

It is well-known that LEs come with low decoding complexity
relative to those ML or near-MLEs (e.g. [3]) which use LEs as their
initial or preprocessing steps. In practice, when complexity is of
high priority, LEs are preferred. However, one major reason that
hinders LEs to get more attention in theory and practice is that their
performance loss is not quanti ed. In the following we remove this
obstacle by revealing the diversity of LEs.

3. THE DIVERSITY OF LINEAR EQUALIZERS
Let us rst de ne the orthogonality de ciency (od) of an M × N
matrixH = [h1, h2, . . . , hN ] as in [6]:

od(H) = 1−
det(HHH)�N

n=1
‖hn‖2

, (4)

where ‖hn‖, 1 ≤ n ≤ N is the norm of the nth column ofH . Note
that 0 ≤ od(H) ≤ 1, ∀H . IfH is singular, od(H) = 1, and if the
columns of H are orthogonal, od(H) = 0. The smaller od(H) is,
the more orthogonal H is. Given the model in (1), if od(H) = 0,
i.e., H is orthogonal, then LEs have the same performance as that
of MLE. Interestingly, we nd that od(H) is directly related to the
performance of LEs.

With the general system model in (1) and the de nition of od in
(4), we establish the following result regarding the diversity order of
the ZF equalizers.

Theorem 1 Consider a linear system in (1), where the entries of the
channel matrix are complex Gaussian distributed with zero mean,
and the information symbols are drawn from integer lattice (Gaussian
integer ring). The linear ZF equalizer in (2) collects the same diver-
sity as MLE does if there exists a constant ε ∈ (0, 1) such that ∀H ,
od(H) ≤ ε.

Proof: Let us de ne H† = [a1, a2, . . . , aN ]T , where aT
n , n ∈

[1, N ] is the ith row of H†. Hence, if |aT
n w| is less than 1

2
, that

means both the real and imaginary parts of ηn are less than 1

2
, we will

de nitely decode the nth symbol of s correctly, since all the entries
of s belong to the Gaussian integer ring. Thus, the error probability
of the nth symbol for a givenH , Pe,n|H is upper-bounded by

Pe,n|H ≤ P
�
|aT

nw| ≥ 1

2

��H�
. (5)

From [6, Lemma 1], we obtain the following inequality:

|aT
n w| ≤ ‖aT

n‖ · ‖w‖ ≤
1�

1− od(H) · ‖hn‖
‖w‖, (6)

where hn, n ∈ [1, N ] represents the nth column of H . Further-
more, as we have assumed, if there exists ε ∈ (0, 1) such that ∀H ,
od(H) ≤ ε, we obtain the following inequality:

Pe,n|H ≤ P
�
‖w‖ ≥

√
1−ε

2
‖hn‖

���H�
. (7)

Here, we notice that ε ∈ (0, 1) is a constant independent from H .
By averaging (7) with respect to the random matrixH , the average
error probability can be further simpli ed as

Pe,n = EH

�
Pe,n|H

	
≤ EH



P

�
‖w‖2 ≥

1− ε

4
‖hn‖

2

����H
�


= Ew



P

�
‖hn‖

2 ≤
4‖w‖2

1− ε

����w
�


, (8)

where E[·] denotes the expectation.
Suppose that the rank of the covariance matrix R = E[hnhHn ]

isDn and Dn ≤ M . Using the eigenvalue decomposition, we have
R = UΛUH, where U is an M × Dn unitary matrix and Λ is a
Dn × Dn diagonal matrix. De ne h̃n as a Dn × 1 vector, whose
entries are independent Gaussian random variables with zero mean
and variance σ2

n,d. Since hn has identical distribution with Uh̃n,
for any β > 0 we have:

P
�
‖hn‖

2 ≤ β
�

= P
�
‖h̃n‖

2 ≤ β
�
≤

Dn�
d=1

P (|h̃n,d|
2 ≤ β), (9)

where h̃n,d is the dth entry of h̃n. Because h̃n,d is Gaussian distrib-
uted, we have

P

�
2|h̃n,d|

2

σ2
n,d

≤
2β

σ2
n,d

�
= e−γn,d

∞�
k=1

(γn,d)
k−1

k!
γn,d ≤

β

σ2
n,d

, (10)

where γn,d = β

σ2

n,d

. Plugging (10) into (9), we obtain

P
�
‖hn‖

2 ≤ β
�
≤ cnβDn , (11)

where cn =
�Dn

d=1

1

σ2

n,d

.
Consequently, the error probability in (8) is bounded as

Pe,n ≤ Ew



P

�
‖hn‖

2 ≤
4‖w‖2

1− ε

����w
�


= cn

�
4

1− ε

�Dn (2Dn − 1)!

(Dn − 1)!

�
1

σ2
w

�−Dn

. (12)

Therefore, the diversity order of the ZF equalizer for the nth symbol
is greater than or equal to Dn = rank(E[hnhHn ]), if there exists
ε ∈ (0, 1) such that ∀H , od(H) ≤ ε. In general, for the system in
(1), the diversity order of the ZF equalizer is greater than or equal to
minn{rank(E[hnhHn ])}.

Now, let us revisit the diversity order of MLE. According to [9,
p. 66], we know that for MLE, the pairwise error probability for an
error pattern e = s − s′ (s �= s′) is bounded as

P (s → s
′ | H) ≤ exp

�
−
‖He‖2

4σ2
w

�
= exp

�
−
‖he‖

2

4σ2
w

�
, (13)

where he = He, which is a linear combination of hn’s, n ∈ [1, N ],
with coef cients drawn from Gaussian integer ring. Furthermore, by
averaging (13) with respect toH , we obtain the error probability as

P (s → s
′) ≤ Ce

�
1

σ2
w

�−Gd,e

, (14)

where Ce is a nite constant andGd,e = rank(E[heh
H
e ]). Thus, the

diversity order that MLE can collect is

GML
d = min

e�=0
Gd,e = min

e�=0
rank(E[heh

H
e ]). (15)

Compared with the diversity of the ZF equalizer, it is ready to obtain

GML
d = min

e�=0
rank(E[heh

H
e ]) ≤ min

n
rank(E[hnh

H
n ]) ≤ GZF

d . (16)

Thus, we conclude that, if od(H) < ε and ε < 1, the ZF equalizer
collects the same diversity as that exploited by MLE. �

The same claim can be made for the MMSE equalizer. Further-
more, we can extend Theorem 1 for any channel distribution as:
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Table 1. Distributions of the od of i.i.d. channel matrixH

n Exact Distribution f(1− x) Approximate β(a, b)
2 1 (1, 1)
3 4(1− x) + 4x ln(x) (3.1818, 0.9091)
4 13.5 + 216x − 229.5x2 + (108x + 135x2) ln x− 27x2 ln2 x (7.4529, 0.7710)
5 128

3
+ 6912x − 58752x2 + 155392

3
x3 + 1728x ln x− 20736x2 ln x− 25792x3 ln x

−6912x2 ln2 x + 4992x3 ln2 x− 384x3 ln3 x (16.1011, 0.6430)

Corollary 1 Given a linear model as in (1), if od(H) < ε, and
ε ∈ (0, 1), ∀H , then LEs collect the same diversity as MLE does.

On the other hand, if the supreme of od(H) is 1 (i.e., sup(od(H)) =
1 ), i.e., there is no ε < 1 such that od(H) ≤ ε, then in general, LEs
lose diversity relative to MLE. Intuitively, this can be observed from
(12). When ε approaches 1, the upper bound of Pe,n becomes 1.
Thus, LEs lose diversity. In the following, we give some examples
to show how to apply our results in practical systems.

4. APPLICATIONS

First, we use two examples to verify Theorem 1. Consider the chan-
nel matrix in [7], which is orthogonal, then od(H) = 0 for any
non-zero realization ofH . In this case, the ZF detector has the same
performance as MLE does. Surely, they have the same diversity. An-
other example is the Toeplitz matrixH in [8] generated by the rst
column [h1...hL 0...0]T . In this case,

od(H) ≤ 1−
�

max� |h�|2�
L
�=1

|h�|2
�N

≤ 1− 1

LN < 1. (17)

Based on Theorem 1, LEs collect the same diversity as MLE does,
which is consistent with the claim in [8].

However, for many transmission systems, od(H) does not have
an upper bound less than 1, e.g., MIMO V-BLAST channels which
have independent entries. As shown in [11], for MIMO V-BLAST
systems, the ZF equalizer loses diversity relative toMLE. Theorem 1
also hints that if one can reduce od(H) lower than a certain bound,
then the diversity of LEs can be restored. Lattice reduction (LR)
is one of these approaches, which guarantees the upper bound of
od(H) is strictly less than 1 and thus LR-aided LEs collect maxi-
mum diversity [6, 11].

Here, we propose an alternative way to guarantee maximum di-
versity.

Proposition 1 Consider the model in (1) and a constant ε ∈ (0, 1).
A hybrid equalizer is designed as: if od(H) ≤ ε, LEs are employed;
otherwise, MLE (or any other decoder with maximum diversity) is
adopted. This equalizer collects the same diversity order as pure
MLE does, but requires much lower complexity.

Based on Theorem 1, it is ready to prove Proposition 1. We
notice that by selecting ε, we can trade-off the performance with the
complexity. That means, when ε is small, more realizations ofH are
dealt with using MLE, then the performance of this hybrid equalizer
is better with larger coding gain while the complexity is also higher.
Later our simulation results verify this trade-off. To further quantify
the trade-off (e.g., control the percentage of the usage of MLE), we
have to learn more about the statistical properties of od(H), so that
we can choose the trigger ε wisely. Thus, in the following we derive
the distribution of od(H).

5. THE DISTRIBUTION OF od (H)

Since the channel matrixH is random, od(H) is also random. When
od(H) has an upper bound which is strictly less than one, LEs
guarantee diversity. Therefore, in this section, we focus on general
Gaussian random channelH where sup(od(H)) = 1 (no guarantee
on diversity).

First, we consider i.i.d. channels, i.e., the channel coef cients
are i.i.d. complex Gaussian random variables with zero mean and
unit variance. By applying theQR decomposition ofH ,H = QR,
we can rewrite od(H) in (4) as

1− od(H) =
N�

n=1

R2
n,n

R2
n,n +

�n−1

m=1
|Rm,n|2

, (18)

where Rm,n is the (m, n)th entry of the upper triangular matrixR.
According to [10, Lemma 2.1], 2R2

n,n is Chi-square distributed with
2(M − n + 1) degrees of freedom, while the off diagonal entries,
Rm,n for m < n, are complex Gaussian random variables with
zero mean and unit variance, and they are independent. Based on
[5, p. 188], R2

n,n

R2
n,n+

�n−1

m=1
|Rm,n|2

is a Beta random variable with

parameters (M − n + 1, n − 1). Hence, 1 − od(H) in (18) is a
product of N independent Beta random variables.

The distribution of the product of N independent Beta random
variables can be computed by induction from the distribution of the
product of N − 1 Beta variables. The exact distribution of (18) can
be found by following the approach in [2, p. 58]. However, the
number of parameters increases as N increases. Fortunately, it has
been shown by [1] that the product in (18) can be well approximated
by a Beta variable which only needs two parameters. Here, we list
some expressions of exact and approximate distributions of od(H)
in Table 1 whereM = N = n andH has i.i.d. entries.

If the channels are not i.i.d. but still Gaussian distributed, od(H)
can also be approximated as a Beta random variable, because 1 −
od(H) is still a product of N Beta random variables. Though these
Beta random variables may be correlated with each other, the prod-
uct can still be approximated by a Beta random variable. Thus, in
practice, we may treat od(H) as Beta distributed. We summarize
the results regarding the distribution of od(H) as follows.

Proposition 2 Suppose thatH is complex Gaussian distributed with
zero mean and sup(od(H)) = 1. Then od(H) is approximately a
Beta random variable with only two parameters.

With the distribution of od(H) by estimating the two parame-
ters of Beta distribution, one has more control on the system design,
e.g., by choosing ε according to the distribution of od(H), one can
control the percentage of the usage of LEs, and thus achieve the
trade-off between the complexity that we can afford and the opti-
mal coding gain. Also the distribution of od(H) will be helpful for
further analyzing the performance and capacity of LEs.
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Fig. 1. Performance of LEs for i.i.d. channels

6. SIMULATION RESULTS

In the following examples, QPSK modulation is used and SNR is
de ned as symbol energy versus noise power, i.e., E[|s|2]/σ2

w .
Example 1 (Performance of LEs with bounded od(H)): In this
example, we generate the channel coef cients as i.i.d. complex Gaus-
sian variables and discard those realizations that od(H) > ε. Thus,
we upper bound od(H) by ε. In Fig. 1, we plot the BERs of the
ZF and MMSE equalizers with ε = 0.8, 0.99 respectively, where
M = N = 4. The BERs of the ZF and MMSE with unconstrained
od(H) (without discarding those od(H) > ε cases), and MLEs
are also plotted as references. From Fig. 1, we observe that, if
od(H) ≤ ε < 1, LEs collect the same diversity order as MLE
does, which is 4 here, while the LEs without od bound only collect
diversity 1. On the contrary, the performance of MLEs is not highly
in uenced by od(H). We also notice that when ε is smaller, the
gap between LEs and MLE is smaller. This is consistent with the
observation that when ε is smaller, the upper bound of the BER per-
formance in (12) also becomes smaller, which shows that in general
for LEs, a smaller od(H) indicates higher coding gain while the di-
versity is the same as that collected by MLE.
Example 2 (Hybrid equalizer for precoded OFDM systems): In
this example, we apply our proposed hybrid equalizer to the pre-
coded OFDM systems in [4], in which the equivalent system model
can also be expressed as in (1). We x the channel order L = 3
(4 taps), so the maximum diversity is L + 1 = 4. In Fig. 2,
we plot the BER curves of the hybrid ZF-ML equalizer with ε =
0.521, 0.760, 0.915, for which the percentages of channel realiza-
tions that are decoded by the ZF equalizer are 25%, 50%, 75% re-
spectively according to the distribution of od(H). The BERs of
the pure ZF equalizer and the pure MLE are also plotted as refer-
ences. From the gure, we notice that the diversity order of the
hybrid equalizers is 4, which is the same as that of MLE. Surpris-
ingly, even a hybrid equalizer with 75% ZF and 25% MLE has per-
formance close to that of pure MLE, and outperforms an alternative
low-complexity decoder in [6] (LR-aided ZF equalizer), and pro-
vides more exibility to trade-off complexity and performance.

7. CONCLUSIONS

In this paper, we shed the light of the fundamental link between
the orthogonality de ciency of channel matrix and the diversity col-
lected by LEs. We show that when od(H) has a bound strictly less
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Hybrid ZF ε=0.915
LR aided ZF equalizer
ML equalizer

Fig. 2. Performance of hybrid LEs for precoded OFDM

than 1, LEs collect the same diversity as MLE does. Furthermore,
we derive the pdf of od(H). Based on that, we can switch the equal-
izer among the existing ones according to the affordable complexity
at the receiver without sacri cing diversity.1
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