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ABSTRACT

Lattice reduction (LR) is a powerful technique for improving the
performance of suboptimum MIMO data detection methods. For
LR-assisted data detection, the LLL algorithm has been considered
almost exclusively so far. In this paper, we propose and develop the
application of Seysen’s algorithm (SA) to LR-assisted MIMO detec-
tion, and we show that the SA is a promising alternative to the LLL
algorithm. Specifically, the SA outperforms the LLL algorithm in
that it finds better lattice bases for MIMO systems of practical inter-
est, which is reflected by an improved performance of SA-assisted
detectors relative to their LLL-assisted counterparts. We present an
efficient implementation of the SA whose per-iteration complexity
is linear in the number of antennas, and we demonstrate that the SA
requires significantly fewer iterations than the LLL algorithm.

Index Terms—MIMO data detection, spatial multiplexing, lattice
reduction, LLL algorithm, Seysen’s algorithm.

1. INTRODUCTION

It is well known that the diversity offered by multiple-input
multiple-output (MIMO) fading channels cannot be fully exploited
by conventional suboptimum detectors (like linear equalization and
decision-feedback schemes [1]), and thus the performance of such
detectors is significantly inferior to that of maximum likelihood
(ML) detection [2]. ML detection exploits all of the available di-
versity but tends to be computationally intensive.

A powerful preprocessing technique for improving the perfor-
mance of suboptimum data detectors is lattice reduction (LR) [3–6].
The channel realization is regarded as a basis of a lattice, and one
attempts to find a better (i.e., more orthogonal) basis for the same
lattice. Suboptimum detectors can then be applied to this better ba-
sis, which results in improved performance. So far, almost exclu-
sively the LLL algorithm [7] has been considered for LR-assisted
data detection. The LLL algorithm allows suboptimum detectors to
exploit all of the available diversity [8].

In this paper, we propose Seysen’s algorithm (SA) [9,10] for LR-
assisted MIMO detection. By simultaneously reducing the lattice
basis and its dual, the SA attains a (local) minimum of Seysen’s or-
thogonality measure in an efficient manner. Seysen’s orthogonality
measure, like the orthogonality defect, is minimal if and only if the
basis is orthogonal. It is shown in [9, 10] that the SA can achieve
very good results—in the sense of efficiently finding the shortest
lattice basis vector—for lattices of moderate size.

This work was supported by the STREP project MASCOT (IST-
026905) within the Sixth Framework of the European Commision.

Here, we will demonstrate that, for MIMO detection, the SA out-
performs the LLL algorithm in that it finds better bases for MIMO
channels of practical interest. Indeed, our simulation results show a
significantly improved performance of SA-assisted detectors com-
pared to their LLL-assisted counterparts. We also describe an ef-
ficient implementation of the SA whose computational complexity
per iteration is linear in the number of antennas (as for the LLL
algorithm), and we demonstrate that the SA requires significantly
fewer iterations and basis updates than the LLL algorithm.

This paper is organized as follows. In the remainder of this sec-
tion, we discuss the system model and we review the principle of
LR-assisted data detection. In Section 2, we describe the SA in the
MIMO detection setting. An efficient implementation of the SA and
a complexity assessment are provided in Section 3. Finally, simula-
tion results are presented in Section 4.

1.1. System Model

We consider a MIMO channel with M transmit antennas and N≥M
receive antennas, and a spatial multiplexing system such as V-
BLAST [1] where the mth data symbol dm is directly transmitted
by the mth transmit antenna. For a given time instant, this leads to
the well-known baseband model

r = Hd + w , (1)

with the transmitted data vector d �= (d1 · · · dM)T, the N×M channel

matrix H, the received vector r �= (r1 · · · rN)T, and the noise vector

w �= (w1 · · · wN)T. The data symbols dm are drawn from a symbol
alphabet A that is properly scaled and shifted such that it consists of
complex-valued integers (see, e.g., [4,5]). The noise components wi
are assumed independent and circularly symmetric complex Gaus-
sian with variance σ2

w.

1.2. LR-Assisted Data Detection

In LR-assisted data detection [3–6] (see also Babai’s approximation
[11]), the columns hm of the channel matrix H = [h1 · · · hM ] are
viewed as a basis for an M-dimensional lattice L in1

C
N,

L
�=
{

Hz =
M

∑
m=1

hmzm : z ∈ CZ
M
}

.

The goal now is to transform the lattice basis H into a “better” (i.e.,

more orthogonal) basis H̃ for the same lattice L . This allows sub-

1We remain in the complex domain although LR with the LLL algorithm
is usually discussed for an equivalent real 2M-dimensional lattice [4, 5].
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optimum detectors (such as the zero-forcing (ZF) detector) to per-
form more reliably. The “reduced” and original bases are related

as H̃ = HB, where B = [b1 · · · bM ] is an M×M unimodular matrix
(i.e., it has complex integer entries and det(B) =±1).

Data detection based on the reduced basis H̃ is now performed as
follows. We can rewrite our system model (1) as

r = HBB−1d + w = H̃d̃ + w ,

where d̃ = B−1d is in CZ
M since B−1 is again integer-valued.

Hence, instead of detecting d ∈ A M based on H, one can detect

d̃ ∈ CZ
M based on H̃. Let us denote the result as ˆ̃d ∈ CZ

M. The
final detection result d̂ ∈A M is then obtained as

d̂ = QA

{
B ˆ̃d
}

,

where QA {·} denotes componentwise quantization with respect to
the symbol alphabet A.

2. SEYSEN’S ALGORITHM FOR MIMO DETECTION

2.1. Preliminaries

For LR-assisted data detection or precoding, the LLL algorithm has
been considered almost exclusively [4–6,11,12]. By using an upper

bound on the orthogonality defect of the reduced basis H̃ obtained
with the LLL algorithm, it has been shown [8] that the usual sub-
optimum detectors applied after LLL preprocessing can achieve full

diversity. We note that the orthogonality defect of H̃ is defined by

δ (H̃) �=
1

|L |
M

∏
m=1

∥∥h̃m
∥∥2

, (2)

where |L |= det(HHH) = det(H̃HH̃) is the volume of a fundamen-

tal cell of the lattice L . We have δ (H̃) ≥ 1, with δ (H̃) = 1 if and

only if the columns of H̃ are orthogonal.

The SA is based on a measure of orthogonality that is different
from the orthogonality defect in (2), namely, Seysen’s orthogonality
measure [9]

S(H̃) �=
M

∑
m=1

∥∥h̃m
∥∥2∥∥h̃#

m
∥∥2

. (3)

Here, h̃#
m is the mth basis vector of the dual lattice L #, i.e., H̃#HH̃ =

I, where H̃# �= [h̃#
1 · · · h̃#

M ] denotes the dual basis. S(H̃) assumes its

minimum, S(H̃) = M, if and only if the basis H̃ is orthogonal. The

SA finds a (local) minimum of S(H̃) = S(HB) in an iterative way.
In view of (3), we can say that the basis and its dual are reduced
simultaneously.

2.2. Basic Principle of the SA

The following discussion of the basic principle of the SA adapts the
SA (as presented in [9, 10]) to the complex-valued case.

Structure of the SA. With the initialization B = I and H̃ = H, the
SA repeats the following steps until H̃ is SA-reduced (see below):

1. Based on H̃ = HB, an index pair (s, t) with s, t ∈ {1, . . . ,M}
is selected and a corresponding update value λs,t ∈ CZ is
calculated.

2. Basis update:

B = [b1 · · ·bs−1 b′s bs+1 · · ·bM ] with b′s = bs +λs,tbt (4)

or, equivalently,

H̃ =
[
h̃1 · · · h̃s−1 h̃′s h̃s+1 · · · h̃M

]
with h̃′s = h̃s +λs,t h̃t . (5)

Note that h̃′s = Hb′s.

At each iteration, H̃ is again a valid basis for L. If fact, any basis
for L can be achieved by a sequence of updates according to (4) or
(5) (also the LLL algorithm uses such updates).

SA-Reduced Basis. Let us consider a basis vector update (5) for a
given index pair (i, j) (not necessarily the selected index pair (s, t)):

H̃i, j
�= [h̃1 · · · h̃i−1 h̃′i h̃i+1 · · · h̃M ] with h̃′i = h̃i +λi, jh̃ j .

Following the derivation in [9, 10], the best update value λi, j such

that S(H̃i, j) is minimized is obtained as

λi, j =

⌊
1

2

(
h̃#H

j h̃#
i

‖h̃#
i ‖2

− h̃H
j h̃i

‖h̃#
j‖2

)⌉
, (6)

where �·� denotes rounding to the nearest integer. It can be shown

[9] that S(H̃i, j) < S(H̃) if and only if λi, j 	= 0. We call the basis H̃
SA-reduced if no decrease of S(H̃) can be achieved for any (i, j),
i.e., λi, j = 0 for all possible (i, j). Thus, to obtain an SA-reduced
basis, one simply has to repeat Step 1 and Step 2 until no decrease

of S(H̃i, j) is observed; this corresponds to a local minimum of Sey-
sen’s orthogonality measure.

Selection of (s, t). For determination of the index pair (s, t), we
adopt a greedy selection procedure as proposed in [10]. At each it-
eration, one selects (s, t) such that the decrease in Seysen’s orthog-
onality measure is maximized, i.e.,

(s, t) = argmax
(i, j)

Δi, j , with Δi, j
�= S(H̃)−S(H̃i, j) . (7)

That is, one tests all M2−M potential basis updates with respect
to their achieved reduction of Seysen’s orthogonality measure and
the best basis update is retained. If λs,t = 0 (which happens after a
finite number of iterations), the algorithm is converged and a local
minimum of Seysen’s orthogonality measure has been found.

3. EFFICIENT IMPLEMENTATION

While the basic principle of SA reduction is rather simple, the com-
putational complexity appears to be high because at each iteration
M2−M different λ and Δ values have to calculated. However, the
complexity can be reduced significantly by an efficient implemen-
tation of the SA (foreshadowed in [10]) that is presented next.

3.1. Algorithm Statement

Input. The input of the algorithm is given by the original basis
of L , i.e., the channel matrix H; the basis of the dual lattice L #,

i.e., H# = PH, where P �= (HHH)−1HH is the pseudo-inverse (or ZF
equalizer) of H; and the corresponding Gram matrices G = HHH
and G# = H#HH# = (HHH)−1.

Initialization. Set H̃ = H and H̃# = H#, and calculate all possible
update values λi, j with their corresponding reduction Δi, j of Sey-
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sen’s orthogonality measure. These values will be used for the up-
dates performed at the various iterations (see below). From (6),

λi, j = �xi, j� , with xi, j
�=

1

2

(
G#

j,i

G#
i,i
− Gj,i

Gj, j

)
. (8)

Using this expression, Δi, j can be efficiently calculated as fol-

lows. The update of the ith basis vector of H̃ according to (5),

h̃′i = h̃i + λi, jh̃ j, corresponds to the update of the jth basis vector

of H̃# according to

H̃#
i, j = [h̃#

1 · · · h̃#
j−1 h̃#′

j h̃#
j+1 · · · h̃#

M ] with h̃#′
j = h̃#

j −λ∗i, jh̃
#
i . (9)

We then have

Δi, j = S(H̃)−S(H̃i, j)

= ‖h̃i‖2‖h̃#
i ‖2 +‖h̃ j‖2‖h̃#

j‖2−‖h̃′i‖2‖h̃#
i ‖2−‖h̃ j‖2‖h̃#′

j ‖2.

Inserting h̃′i = h̃i +λi, jh̃ j and h̃#′
j = h̃#

j −λ∗i, jh̃
#
i , we obtain further

Δi, j = −2
(|λi, j|2‖h̃ j‖2‖h̃#

i ‖2 + ‖h̃#
i ‖2 Re{λi, jh̃H

i h̃ j}
− ‖h̃ j‖2 Re{λ∗i, jh̃

#H
j h̃#

i }
)

= −2
(|λi, j|2Gj, jG#

i,i + G#
i,i Re{λi, jGi, j} − Gj, j Re{λ∗i, jG

#
j,i}
)

= 2Gj, jG#
i,i

[
Re

{
λ∗i, j

(
G#

j,i

G#
i,i
− G∗i, j

Gj, j

)}
− |λi, j|2

]

= 2Gj, j G#
i,i
(
2Re{λ∗i, j xi, j}− |λi, j|2

)
. (10)

Iteration. Set B = I and repeat the following steps until H̃ is SA-
reduced (i.e., λi, j = 0 for all (i, j)).

1. Select (s, t) according to (7) and update B (see (4)), H̃ (see

(5)), and H̃# (see (9)) using λs,t (see (6)).

2. Compute corresponding updates of G and G#. Because the

update of H̃ just changes the sth column, only the sth row
and column of G have to be updated. This can be performed
according to

G′s, j = (h̃s +λs,t h̃t)H h̃ j = Gs, j + λ ∗s,tGt, j , j 	= s

G′s,s = ‖h̃′s‖2

G′j,s = G′∗s, j .

Similarly, the tth row and column of G# are updated accord-
ing to

G#′
t, j = (h̃#

t −λ ∗s,t h̃#
s )

H h̃#
j = G#

t, j−λs,tG#
s, j , j 	= t

G′t,t = ‖h̃#′
t ‖2

G#′
j,t = G#′∗

t, j .

3. Calculate new λi, j values (see (8)) and Δi, j values (see (10))
for all index pairs corresponding to updated elements of G
and G#. These are the index pairs (i,s), ( j, t), (s, i), and (t, j)
for i = 1, . . . ,M and j = 1, . . . ,M with i 	= s, j 	= t.

Output. The output of the algorithm is given by the unimodular

transformation matrix B, the SA-reduced basis H̃ = HB, and the
associated reduced dual basis H̃# = P̃H.

SA: # of iterations =
# of basis updates

LLL: # of iterations
LLL: # of basis updates
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Figure 1. cdf of the number of iterations and basis updates required
by the SA and the LLL algorithm.

3.2. Computational Complexity

The complexity of an LR algorithm for MIMO detection depends
on the hardware implementation and platform used. However, to a
large extent, it will be determined by the required number of iter-
ations (which will be assessed by means of simulation results in
Section 4), since across the iterations parallel or pipelined hard-
ware structures are hardly possible. For a rough picture of the
per-iteration complexity, we now provide corresponding asymptotic
O(·) results.

The initialization of the SA requires calculation of M2−M differ-
ent λ values according to (8) and at most (if the corresponding λi, j’s

are all nonzero) M2−M different Δ values according to (10). Thus,
the initialization step has a computational complexity of O(M2).
At each iteration, the update of B, H̃, and H̃# has a complexity
of O(M). Furthermore, the update of G and G# involves M ele-
ments, which gives a complexity of O(M). Finally, the calculation
of 4M− 4 λ values and at most 4M− 4 Δ values in Step 3 above
again results in a complexity of O(M). Thus, per iteration the com-
putational complexity of the SA is just linear in M.

The LLL algorithm, too, has a complexity of O(M) per iteration.
However, it is important to note that one LLL iteration (i.e., column
swap with Givens rotations) usually comprises several basis updates
using size reduction (see, e.g., [5] for details). This is different from
the SA, where one iteration corresponds to exactly one basis update.
We note, at this point, that the per-iteration complexity of the SA is
larger than that of the LLL algorithm whereas its required number
of iterations is significantly smaller (see Section 4). Furthermore,
the individual update operations performed at each SA iteration are
to a large part independent of each other, which allows the use of
parallel hardware structures to increase the throughput.

4. SIMULATION RESULTS

We will now assess the performance of the SA and compare it to that
of the LLL algorithm by means of simulation results. We considered
a MIMO channel with M = N = 8 antennas and iid Gaussian entries.
The SA was directly applied to the complex channel while the LLL
algorithm was applied to its equivalent real form (cf. [4–6]).

Number of Iterations. First, we compare the number of iterations
and basis updates required by the SA and the LLL algorithm. Fig. 1
shows the corresponding cumulative density functions (cdf’s). It
is seen that the SA requires significantly fewer iterations and basis
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Figure 2. Performance of the SA and the LLL algorithm: (a) cdf
of ln(κ(H̃)) (κ(H̃) denotes the condition number of H̃), ln(δ (H̃))
in (2), and ln(S(H̃)) in (3) for the SA-reduced, LLL-reduced, and
original bases, (b) SER-versus-SNR performance of SA-assisted and
LLL-assisted ZF and MMSE detection.

updates than the LLL algorithm. Furthermore, the variability of the
number of iterations and basis updates is smaller.

Quality of Reduced Basis. Next, we compare the performance of
the SA and the LLL algorithm in terms of the quality (orthogonality)

of the reduced basis H̃. Besides the orthogonality defect δ (H̃) in (2)

and Seysen’s orthogonality measure S(H̃) in (3), we also consider
the condition number, i.e. the ratio of the maximum and minimum
singular values of H̃, denoted as κ(H̃). This is another popular mea-
sure of the quality of a basis for data detection (e.g., [5, 13]). Fig.
2(a) compares the cdf’s of the natural logarithm ln(·) of these quan-
tities for the SA-reduced, LLL-reduced, and original bases. It is
seen that both the SA and the LLL algorithm achieve strong re-
ductions of all three orthogonality measures. Furthermore, the SA

outperforms the LLL algorithm significantly in terms of κ(H̃), less

strongly in terms of S(H̃), and slightly in terms of δ (H̃).

Performance of Detectors. Finally, we compare the performance
of SA-assisted and LLL-assisted data detectors for 4-QAM modula-
tion. Fig. 2(b) shows the symbol-error rate (SER) versus the signal-
to-noise ratio (SNR) for the ZF and minimum mean-square error
(MMSE) detectors and their LR-assisted versions (cf. [5]). As a

performance reference, the result of the ML detector is also pro-
vided. It is seen that LR strongly improves the performance of ZF
and MMSE detection. Furthermore, the SA-assisted detectors per-
form significantly better than their LLL-assisted counterparts.

5. CONCLUSIONS

We proposed Seysen’s algorithm (SA) for efficient lattice-reduction
assisted MIMO detection. The SA is different from the more widely
known LLL algorithm in that it simultaneously reduces the lattice
basis and its dual. This was seen to lead to a conceptually simple
procedure for finding “more orthogonal” lattice bases. We presented
an efficient implementation of the SA whose complexity per itera-
tion is linear in the number of antennas (as for the LLL algorithm).
Our simulations showed that the SA requires significantly fewer it-
erations than the LLL algorithm. We also observed that the bases
obtained with the SA tend to be better than those obtained with the
LLL algorithm, and that SA-assisted MIMO detectors outperform
their LLL-assisted counterparts.f

While MIMO detection has been considered in this paper, we note
that the SA can also be used to assist suboptimum vector perturba-
tion techniques for MIMO precoding (see, e.g., [12] for the applica-
tion of the LLL algorithm in this context).
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