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ABSTRACT
In this paper we consider multiple access systems where users and
access point are equipped with multiple antennas. In order to ex-
ploit some of the MIMO potentials we have to resort to space-time
coding. Unfortunately, such a processing may induce severe loss in
terms of achievable information rates. In this paper we prove the
necessary and suf cient condition ensuring that the space-time cod-
ing is information lossless, in the sense that it does not induce any
modi cation in certain regions of achievable rates. In particular in-
formation lossless property is guaranteed if each user makes use of
a Trace-Orthogonal Design (TOD), that is a linear space-time code
whose encoding matrices are orthogonal with respect to the trace in-
ner product. Noteworthy, users can also use the same set of encoding
matrices.

Index Terms— MIMOSystems, Multiple Access Channel, Space-
Time Coding, Information Lossless

1. INTRODUCTION

MIMO systems have attracted a lot of research in the recent years,
since they make possible to increase spectral ef ciency and diver-
sity gain without sacri cing transmission power and/or bandwidth
[1]. However, to exploit MIMO potentials, in particular diversity
gain, we have to resort to space-time coding [2]. Unfortunately, this
processing may induce severe loss in terms of capacity [3]. Never-
theless, spectral ef ciency is one of the major motivations for using
MIMO systems so, it is fundamental to discern which are the space-
time coding properties essential to achieve the MIMO potentials
without incurring capacity losses. In the single user scenario there
are several studies in that direction [4], [5] and references therein.
Despite this, it seems that no equivalent study has been carried out
in the multiuser setting. To the best of authors’ knowledge, it seems
that the only contribution dealing with the problem of characterizing
the space-time coding strategies allowing for lossless information
transfer, in the case of multiple access systems, is [6], where the
problem of invariance for the sum-rate has been addressed. In this
work we consider multiple access systems and we extend the result
of [6]. In particular we prove the necessary and suf cient condition,
on the space-time coding strategy for each user, which guarantees
that certain regions of achievable rates are not affected by the cod-
ing. The result is derived on a per-realization basis and thus it holds
regardless of the statistics of the channels. Throughout the paper, we
use the following convention: C

n×p denotes the space of n× p ma-
trices with complex entries; matrices are denoted by bold uppercase
letters and vectors by bold lowercase ones; In denotes the n × n
identity matrix; I and 0 denote respectively an identity matrix and a
null vector with suitable dimensions; logarithms are in base e.

This work has been supported by the project IST-4-027187-STP-
SURFACE funded by the European Union.

2. SYSTEMMODEL

Consider a multiple access system composed of N users, each with
nT transmit antennas, and an access point (AP), with nR receive an-
tennas. Let us assume that the k-th user encodes its own ns complex
symbols sk(j), j = 1, . . . , ns, through the following space-time lin-
ear encoder

Xk =

ns�
j=1

Ak(j)sk(j) (1)

where {Ak(j), j = 1, . . . , ns} is the set of nT ×Q complex matri-
ces assigned to the k-th user.
A space-time encoder is a Trace-Orthogonal Design (TOD), if the
corresponding matrices Ak(1), · · · , Ak(ns) are orthonormal with
respect the trace inner product, that is they satisfy

tr
�
A

H
k (j)Ak(m)

�
= δjm, (2)

where δjm is the Kronecker delta.
Applying the vec(·) operator to (1), we get

xk = vec(Xk) =

ns�
j=1

vec (Ak(j)) sk(j) = F ksk, (3)

whereF k is the (Q·nT×ns)matrix whose j-th column is vec(Ak(j))
and sk = [sk(1) · · · sk(ns)]

T is the vector of transmitted symbols
for the k-th user.
To guarantee symbol recovery1 for each user, matrices F k must be
full column rank, i.e. rank(F k) = ns. This means that the follow-
ing inequality must be satis ed

ns ≤ Q · nT . (4)

We will refer to codes for which F k has full column rank, as non-
singular codes.
As will be clear later, matrices F k (k = 1, . . . , N ) play a funda-
mental role in characterizing the properties of the codes.

Now, let us consider the system. Denoting by Hk ∈ C
nR×nT

the channel matrix characterizing the link between the k-th user and
the AP, and by x̃k the corresponding vector of transmitted symbols,
the received vector is

ỹ =
N�

k=1

Hkx̃k + ṽ, (5)

where ṽ is the noise vector, assumed to be zero mean, circularly
symmetric complex Gaussian, with covariance matrix σ2

vI . We will
refer to (5) as the uncoded system.

1Symbol recovery is guaranteed if mapping in (3) is injective.
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Consider now the system with space-time encoding, where the chan-
nelsHk are assumed to be constant overQ successive channel uses
(block fading model). If each user transmits the matrixXk, built as
in (1), the received matrix is

Y =

N�
k=1

HkXk + V , (6)

where V is the (nR×Q) received noise matrix. Applying the vec(·)
operator2 to (6) and using (1) and (3), we get

y =
N�

k=1

(IQ ⊗Hk)F ksk + v, (7)

where v = vec(V ). We will refer to (7) or (6) as the coded system.
We assume that Pk is the constraint on the transmit power for the

k-th user, no channel state information (CSI) is available at the trans-
mitters and the receiver at the AP has perfect knowledge of CSI. Un-
der the hypothesis of no CSI at the transmitters a sensible choice is
to use a uniform power allocation for each user. In this way, for any
given realization of the channels, the multiple access system can be
characterized by the instantaneous region of achievable rates, which
denote the region of achievable rates for the speci c realization of
the channels, when uniform power allocation is assumed for all the
users [2]. Introducing the notation

H = [H1 · · ·HN ], (8)

for the uncoded system in (5) it assumes the form

Runc(H) =
�

(R1, . . . , RN ) ∈ R
N
+

��� (9)

�
k∈S

Rk ≤ Cunc(H,S) , ∀S ⊆ {1, . . . , N}
�

,

whereRk is the rate for the k-th user, S is any subset of {1, . . . , N},
and

Cunc(H,S) = log

�����I +
�
k∈S

γkHkH
H
k

����� , (10)

where γk = Pk/nT σ2
v .

The corresponding expression for the coded system in (7), when the
transmitted symbols for the k-th user are uncorrelated with variance
Pk/nT , is

Rcod(H) =
�

(R1, . . . , RN ) ∈ R
N
+

��� (11)

�
k∈S

Rk ≤ Ccod(H,S) , ∀S ⊆ {1, . . . , N}
�

,

where

Ccod(H,S) =
1

Q
log

�����I +
�
k∈S

γk(IQ ⊗Hk)F kF
H
k (IQ ⊗H

H
k )

�����
(12)

where the factor 1/Q accounts for the Q uses of the channels, and
F k is de ned in (3).

2In deriving (7) we have used vec(AXB) = (BT ⊗A) vec(X).

3. INFORMATION LOSSLESS SPACE-TIME CODING

The objective of this section is to provide necessary and suf cient
conditions on the encoding matrices for each user so that lossless
information transfer is guaranteed. In general, the coded system (6)
can experience rate reductions depending on the particular choice
of the space-time encoder for each user. For example, in the single
user scenario, it is well known [3] that orthogonal space-time block
coding incurs severe loss in terms of capacity. In a multiuser scenario
the rate loss is experienced in terms of modi cation and/or reduction
of the corresponding region of achievable rates.
We are interested in space-time coding strategies that do not affect
the instantaneous region of achievable rates, as de ned in (9). The
rationale behind this choice is that if such a coding scheme exists
for all the users, whichever are the channel realizations, the property
will hold regardless of the statistics of the channels. This motivates
the introduction of the following de nition

De nition 1. A space-time3 coding strategy is information lossless
for a multiple access system, if the instantaneous regions of achiev-
able ratesRcod(H) andRunc(H), as given in (9) and (11), coincide
for all realizations of the channels.

The main result of this section is Theorem 1, which gives a com-
plete characterization of the information lossless coding strategy.
Before proceeding, we need some preliminary results from matrix
theory.

Lemma 1. IfG ∈ C
n×n is a Hermitian matrix, then

tr[Gk] = n , k = 1, . . . , n ⇐⇒ G = In.

Proof. See Appendix.

Lemma 2. IfM ∈ C
n×n is a Hermitian positive semide nite ma-

trix independent of t, then

∂k log |I + t M |
∂tk

����
t=0

= (−1)k−1(k − 1)! tr(M k), k ∈ N.

Proof. See Appendix.

We are now ready to prove the following

Theorem 1. In the setting of the previous section, if the receiver has
perfect CSI, no CSI is available at the transmitters, and the k-th user
transmits independent symbols with variance Pk/nT , then

Rcod(H) = Runc(H) , ∀H ∈ C
nR×NnT

that is, the instantaneous regions of achievable rates for the coded
and the uncoded systems coincide for all realizations of the channels,
if and only if F kF H

k = I , for k = 1, . . . , N .

Proof. Let us introduce the set E = {1, · · · , N}. The instanta-
neous regions of achievable rates Runc(H) and Rcod(H), as given
in (9) and (11), are functions only of the boundaries expressed in
terms of Cunc(H,S) and Ccod(H,S) respectively. Since we require
the coincidence ofRunc(H) andRcod(H) for all the realizations of
the channels, it is easy to verify that this condition is equivalent to
require

Ccod(H,S) = Cunc(H,S), ∀H ∈ C
nR×NnT , ∀S ⊆ E ,

(13)
3We consider linear space-time codes.
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that is, the coincidence of the corresponding functions Cunc(H,S)
andCcod(H,S) for all the realizations of the channels and for all the
subsets S ofE. Through the proof we will make expressly reference
to this equivalent condition.
(Suf ciency) When F kF H

k = I , for k = 1, . . . , N , from (12), ex-
ploiting the properties of Kronecker product [7], we can draw

Ccod(H,S) =
1

Q
log

�����I +
�
k∈S

γk(IQ ⊗Hk)(IQ ⊗H
H
k )

�����
=

1

Q
log

�����I +
�
k∈S

γk

�
IQ ⊗HkH

H
k

������
=

1

Q
log

�����I +

�
IQ ⊗

�
k∈S

γkHkH
H
k

������
=

1

Q
log

�����IQ ⊗
�

I +
�
k∈S

γkHkH
H
k

������ = Cunc(H,S) (14)

where in the last step we have used the identity |In⊗M | = |M |n.
Note that (14) holds true ∀H ∈ C

nR×NnT , and ∀S ⊆ E. This
coincides with (13) thus proving the suf ciency.

(Necessity). The following relation is assumed to be true

Ccod(H,S) = Cunc(H,S) , ∀H ∈ C
nR×NnT , ∀S ⊆ E . (15)

Let us consider the generic subset of E having K elements S =
{i1, · · · , iK}, where 1 ≤ K ≤ N . So, denoting by

H =
�√

γi1H i1 · · ·
√

γiK
H iK

�
, (16)

and introducing the following block diagonal matrix

F = diag {F i1 , · · · , F iK
} , (17)

identity (15), after some matrix algebra, can be recast as

1

Q
log
���I + (IQ⊗H)ΠF F

H
Π

H(IQ⊗H
H)
���=log

���I + HH
H
���
(18)

whereΠ is the following permutation matrix

Π = [IQ ⊗ P i1 IQ ⊗ P i2 · · · IQ ⊗ P iK
], (19)

with P k de ned as
P k = uk ⊗ InT

, (20)
where uk is the k-th unit vector4 in C

K , that is uk(j) = δkj , for
j = 1, . . . , K . Note thatH , F , andΠ depend on the subset S.

Resorting to the identity |I + AB| = |I + BA|, (18) can be
rewritten as

log
���I + (IQ ⊗H

H
H)ΠF F

H
Π

H
��� = Q log

���I + H
H

H

��� .
(21)

Since (21) is assumed to hold for any channel realization, it is sat-
is ed, in particular, for rank-one channel matrices such that H as-
sumes the following structure5

Ĥ =
√

t [h 0 · · · 0]H t ∈ R
+, h ∈ U , (22)

4It is a column vector.
5Note that the presence of γ1, . . . , γK in (16) does not pose any problem

in building (22), since those values are non null.

where R
+ = [0, +∞), 0 is the KnT -size null vector, and U =

{h ∈ C
KnT : ‖h‖ = 1}, that is U is the set of KnT -size col-

umn vectors with unit norm. With this particular choice, the product
HHH becomes

Ĥ
H

Ĥ = t hh
H , (23)

which, substituted in (21), leads to

log
���I + t (IQ ⊗ h

H)ΠF F
H
Π

H(IQ ⊗ h)
��� = Q log(1 + t) .

(24)
Since (24) must hold true ∀ t ∈ R

+ and ∀h ∈ U , equation (24),
for any h, is an identity between in nitely differentiable functions
of the variable t ∈ R

+.
Taking the Q successive derivatives with respect to t of both sides
of (24), evaluated at t = 0, and resorting to Lemma 2, we get the
following identities valid for k = 1, . . . , Q,

tr

	

(IQ ⊗ h

H)ΠF F
H
Π

H(IQ ⊗ h)
�k
�

= Q ∀h ∈ U ,

(25)
which, according to Lemma 1, hold true if and only if

(IQ ⊗ h
H)ΠF F

H
Π

H(IQ ⊗ h) = IQ , ∀h ∈ U . (26)

Now, let us rewrite the productΠF F H
Π

H as aQ×Q block matrix
where each block, denoted byΦij , has dimensionsKnT ×KnT

ΠF F
H
Π

H =



��

Φ11 · · · Φ1Q

...
. . .

...
ΦQ1 · · · ΦQQ

�
�� (27)

With this position, identity (26) can be recast equivalently as

��

hH
Φ11h · · · hH

Φ1Qh
...

. . .
...

hH
ΦQ1h · · · hH

ΦQQh

�
�� = IQ, ∀h ∈ U . (28)

This holds true if and only if the following identities are satis ed

h
H
Φijh = δij ∀h ∈ U , for i, j = 1, . . . , Q . (29)

Equivalently, (29) states that, for i, j = 1, . . . , Q,

h
H(Φij − δijIKnT

)h = 0, ∀h ∈ U . (30)

Since (30) must hold true ∀h ∈ U , this is possible, according to [7],
if and only if

Φij = δijIKnT
, for i, j = 1, . . . , Q, (31)

that is, if and only if

ΠF F
H
Π

H = IQKnT
, (32)

which is equivalent to

F F
H = IQKnT

, (33)

since Π is a permutation matrix. Finally, taking into account the
de nition of F in (17) we conclude that (33) is equivalent to

F i1F
H
i1

= F i2F
H
i2

= · · · = F iK
F

H
iK

= IQnT
. (34)

Since (34) holds true for any subset S = {i1, · · · , iK}, it implies
the following nal result

F kF
H
k = IQnT

, (35)

III ­ 47



which holds true for k = 1, . . . , N .
This proves the necessity for the subclass of rank-one channel

matrices in (22). But since (35) is also the condition that guarantees
(15) for all realizations of the channels, as follows from the proof
of suf ciency, we conclude a fortiori 6 that (35) is also a necessary
condition for the whole class of channel matrices. Stated differently,
the proof of suf ciency demonstrates the existence of a solution to
the problem of information invariance with respect to the channel
realizations, namely (35). The proof of necessity guarantees that
such a solution is unique showing that for a subclass of channel re-
alizations, condition (35) must necessarily hold. The proof is thus
complete.

3.1. Consequences of Theorem 1

Condition (35) holds true only if F k has full row rank. Since F k is
QnT × ns, it can occur only if

ns ≥ QnT . (36)

Combining (36) with (4), we arrive at the following equality

ns = Q · nT , (37)

which is equivalent to say that the code rate, de ned as R = ns/Q,
is equal to nT , for all users. This means that all users must use a
full-rate code.

Moreover condition (37) forces F k to be square and this, to-
gether with (35), implies that F k is unitary, i.e., it is also true that
F H

k F k = I . This is a strong result that allows us to fully char-
acterize the encoding matrices Ak(j), for each user. In fact, tak-
ing into account the structure of F k (see (3)), the generic element�
F H

k F k

�
i,j

= {I}
i,j
of the identity F H

k F k = I can be written as

vecH(Ak(i)) vec(Ak(j)) = tr
�
A

H
k (i)Ak(j)

�
= δij (38)

where vecH(X) vec(Y ) = tr(XHY ) has been used.
The last equality in (38) holds true if and only if the the encoding
matrices Ak(j) (j = 1, . . . , ns), for each user, constitute a Trace-
Orthogonal Design. Thus, combining (37) and (38), the consequence
of Theorem 1 can be summarized in the following

Corollary 1. A space-time coding strategy for a multiple access sys-
tem, based on nonsingular linear codes, is information lossless if
and only if each user employs a full-rate Trace-Orthogonal Design.

4. CONCLUSION

In this work we have considered multiple access systems where users
and access point are equipped with multiple antennas. In order to
exploit some of the MIMO potentials we have to resort to space-
time coding. We have studied the way to carry out such a coding
strategy in order to avoid information losses. In particular we have
proved that for any realization of the channels we can guarantee that
the instantaneous region of the achievable rates does not change if
and only if each user encodes its symbol using a full-rate Trace-
Orthogonal Design. The result holds true regardless of the statistics
of the channels. Moreover no other constraints are imposed on the
choice of the encoding matrices as far as they belong to a Trace-
Orthogonal Design. So, as far as the invariance of the achievable
rates region is concerned, all users can share the same set of encoding
matrices.

6Note that without the proof of suf ciency, we would not have been able
to extend the necessity condition to the whole class of channel matrices, since
(35) could not be a feasible solution for such a class.

5. APPENDIX

In this Section, we collect the proofs of lemmas enunciated in the
paper. Towards this end we will make use of the following result

Lemma 3. IfG ∈ C
n×n is a Hermitian matrix with all eigenvalues

equal to 1, thenG = In.

Proof. Let us indicate with γ1 = γ2 = · · · = γn = 1 the eigenval-
ues ofG. SinceG = GH , there exists a unitary matrix U such that
the following chain of equalities holds

G = U diag{γ1, γ2, · · · , γn}UH = UU
H = In.

That is, the identity matrix In is the only n × n Hermitian matrix
with all the eigenvalues equal to 1.

Proof of Lemma 1

Since n = tr[In] = tr[(In)k], it is known from [7] that

tr[Gk] = tr[(In)k] , k = 1, . . . , n

holds true if and only if G and In have the same eigenvalues, i.e.
G has all its eigenvalues equal to 1. Since G is Hermitian, from
Lemma 3, this is possible if and only ifG = In.

Proof of Lemma 2

Let us denote by λ1 ≥ λ2 ≥ · · · ≥ λn ≥ 0 the eigenvalues of
M . SinceM is positive semide nite, the function log |I + t M | is
in nitely differentiable7 in t = 0. Moreover, the following chain of
equalities holds true for k ∈ N

∂k log |I + t M |
∂tk

����
t=0

=

n�
j=1

∂k log(1 + tλj)

∂tk

�����
t=0

=

= (−1)k−1(k − 1)!
n�

j=1

λk
j

(1 + tλj)k

�����
t=0

= (−1)k−1(k − 1)! tr(M k) ,

where in the last equality, we have used the following identity [7]
relating trace and eigenvalues

�n

j=1
λk

j = tr(M k).
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