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ABSTRACT

Recently there has been growing interest in employing the or-
thogonal space-time block codes (OSTBCs) for blind maximum-
likelihood (ML) detection. Several independent works have sug-
gested that OSTBCs are favorable space-time codes from a blind
receiver implementation standpoint. In this work we turn our atten-
tion to blind ML identi ability, with an emphasis on a special class
of codes called the nonintersecting subspace (NIS) OSTBCs. We
show a powerful property that NIS-OSTBCs are uniquely identi -
able up to a sign for any nonzero channel. However, many existing
OSTBCs are not NIS. We propose a code construction procedure
that can convert an existing OSTBC to an NIS-OSTBC. Simula-
tion result are provided to support our theoretical ndings.

Index Terms— orthogonal space-time block code, blind iden-
ti ability, blind and semiblind detection, maximum likelihood de-
tection, noncoherent detection

1. INTRODUCTION

This paper considers the problem of blind maximum-likelihood
(ML) detection of orthogonal space-time block codes (OSTBCs).
The OSTBC scheme has been well known for its full spatial di-
versity and low receiver complexity, given channel state infor-
mation (CSI) at the receiver. Recently it has been found that in
the blind scenario (also known as the noncoherent or no CSI sce-
nario), OSTBCs are also attractive. Speci cally the special code
characteristics of OSTBCs can be exploited to facilitate the imple-
mentation of a blind ML receiver, and this has resulted in a vari-
ety of suboptimal and optimal blind ML receiver implementations.
Those implementations include a particularly simple closed-form
method [1] (also [2]) that also has an interesting relationship to
a blind subspace receiver [3], an ef cient iterative method called
cyclic ML [1, 4], a quasi-ML convex optimization based method
called semide nite relaxation (SDR) [2], and an exact ML solver
using sphere decoding [2]. All these methods are structurally ef-
fective, which would not be possible for the case of a general
space-time code. Some performance and complexity comparison
of the various blind OSTBC methods can be found in [2].

The focus of this paper is on a special class of OSTBCs, which
we call the nonintersecting subspace (NIS) OSTBCs. The rea-
son for this investigation is that NIS-OSTBCs exhibit very relaxed
blind ML identi ability conditions, as we will explain soon. The
concept of NIS space-time codewords was introduced in the non-
coherent space-time coding context [5] for achieving the full non-
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coherent spatial diversity1. To our best knowledge, no work has
been done on exploring connections between OSTBCs and NIS.
We show that from a blind signal processing viewpoint, an NIS-
OSTBC is ‘perfect’ in the sense that it achieves unique identi a-
bility up to a sign for any nonzero channel. This powerful result
motivates us to study the properties of NIS-OSTBCs. Our experi-
ence was that many existing OSTBCs are not NIS; e.g., the Alam-
outi code. To ll this gap, we propose a construction procedure
that can convert an existing OSTBC to an NIS-OSTBC. Simula-
tion results are presented to support our theoretical ndings.

2. BACKGROUND

We review some key concepts essential to the ensuing develop-
ment. The rst subsection considers OSTBCs and their structures.
The second subsection describes blind ML OSTBC detection.

2.1. Orthogonal Space-Time Block Codes

This work considers OSTBCs with binary PSK (BPSK) or quater-
nary PSK (QPSK) constellations, for which the transmitted code
matrix can be expressed as

C(s) =

K∑
k=1

skXk ∈ C
Mt×T , (1)

where Mt is the number of transmitter antennas, T is the time
length of the code, s ∈ {±1}K is a bit vector, K is the number
of bit symbols, and Xk ∈ C

Mt×T are code basis matrices which
satisfy [7–9]

XkX
H
� =

{
I, k = �
−X�X

H
k , k �= �

(2)

with T ≥ Mt. Equation (1) provides a natural formulation for
real-valued BPSK OSTBCs. Through a simple reformulation,
complex-valued QPSK OSTBCs can also be expressed as (1);
see [2] for example. An OSTBC is row orthogonal: from (1) and
(2) one can show that

C(s)CH(s) = ‖s‖22I = KI (3)

for any s ∈ {±1}K . Here ‖.‖2 denotes the 2-norm. In the co-
herent detection scenario, the code properties in (1), (2), and (3)
result in the well-known advantages of simple ML detection struc-
ture and the maximum spatial diversity [7].

1We should point out that the de nitions of spatial diversity in the co-
herent and noncoherent cases are quite different; see [6] for example.
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In principle, any matrix function satisfying (1) and (2) is said
to be an OSTBC. In practice, most existing OSTBCs are based
on generalized orthogonal designs (GODs) [7–9], which have ad-
ditional restrictions on the code structures. In real GODs, for
instance, the entries of C(s) are constrained to be drawn from
{0,±s1, . . . ,±sK} thereby Xk ∈ {0,±1}Mt×T for all k. For
example, the BPSK Alamouti code

C(s) =

[
s1 −s2

s2 s1

]
(4)

is a GOD. The analysis here is established from (1) and (2), and
GODs will not be assumed unless speci ed. Hence our analysis is
also applicable to non-GOD codes (e.g., the ‘sporadic’ codes [7]).

2.2. Blind ML Detection and Blind Identi ability

We consider a standard scenario [2] where a sequence of OSTBCs
is transmitted over a frequency- at, quasi-static channel. The re-
spective received signal model is given by

Yp = HC(sp) + Vp, p = 1, . . . , P, (5)

whereYp ∈ C
Mr×T is the received code matrix at pth code block,

sp ∈ {±1}K is the transmitted bit vector at the pth code block,
H ∈ C

Mr×Mt is the multiple-input-multiple-output (MIMO)
channel, Mr is the number of receiver antennas, P is the frame
length or number of code blocks in which the channel remains
static, and Vp ∈ C

Mr×T is an additive white Gaussian noise
(AWGN) matrix. Let

S = [ s1, . . . , sP ] ∈ {±1}K×P , (6)

and assume that H is a deterministic unknown. The blind ML
detector is given by [2, 4]

{Ĥ, Ŝ} = arg min
H̃∈C

Mr×Mt ,

S̃∈{±1}K×P

P∑
p=1

‖Yp − H̃C(s̃p)‖
2

F (7)

where the unknown H and S are estimated jointly. Here ‖.‖F

stands for the Frobenius norm.
If C(.) is simply a linear dispersion code satisfying (1), then

solving (7) would be dif cult. It has been shown [2] that by ex-
ploiting the code orthogonality in (3), Problem (7) can simpli ed
to a Boolean quadratic program

Ŝ = arg max
S̃∈{±1}K×P

[ s̃T
1 , . . . , s̃T

P ]

⎡
⎢⎣

G11 . . . G1P

...
. . .

...
GP1 . . . GPP

⎤
⎥⎦

⎡
⎢⎣

s̃1

...
s̃P

⎤
⎥⎦
(8)

where Gpq ∈ R
K×K with [Gpq ]k� = Re{tr{YpX

H
k X�Y

H
q }}

(While (8) leads to Ŝ only, Ĥ can be computed directly from Ŝ if
necessary; see [2, 4]). Problem (8) can then be handled subopti-
mally by either the closed-form method [1,3] or the quasi-optimal
SDR method [2]. Alternatively, (8) can be solved optimally by a
sphere decoding algorithm [2]. Some performance and complexity
aspects of the various algorithms have been reported in [2].

The implementation simplicity of blind ML OSTBC detection
motivates us to investigate the blind identi ability aspects, stated
as follows: Suppose that the true channel H and data matrix S is
a solution of the blind ML problem in (7). This desired solution

is unique only when we cannot nd another solution, denoted by
{H̃, S̃}, such that

HC(sp) = H̃C(s̃p), p = 1, . . . , P. (9)

An obvious situation leading to (9) is when {H̃, S̃} =
{−H,−S}. Sign ambiguity is an inherent problem, but can be
xed easily by a number of ways; e.g., setting one element of S to
be a pilot. Given {H,S}, we say that S is uniquely identi able up
to a sign if (9) does not hold for any {H̃, S̃} �= ±{H, S}. In the
next section, we will consider the class of the NIS-OSTBCs and
its blind identi ability.

3. NONINTERSECTING SUBSPACE OSTBCS

This section contains the main results of this paper. In the rst
subsection we de ne the NIS-OSTBCs and study their properties.
The second subsection proposes an NIS-OSTBC construction pro-
cedure. The proof leading to our construction procedure is detailed
in the third subsection.

3.1. Nonintersecting Subspace Codes and Their Properties

LetR(A) denote the range space ofA. The following is our def-
inition for a nonintersecting subspace (NIS) OSTBC:

De nition 1 An OSTBC is said to be a NIS-OSTBC if

R(CT (s)) ∩ R(CT (s̃)) = {0} (10)

for every s, s̃ ∈ {±1}K , s �= ±s̃.

The NIS concepts were introduced in the noncoherent space-time
coding literature [5] for achieving the full noncoherent spatial di-
versity in an i.i.d. Rayleigh channel. Up to this point there is no
study regarding the existence and construction of NIS-OSTBCs,
which is the subject of this paper. From a blind identi ability
standpoint, NIS-OSTBCs are ‘perfect’ blind space-time codes:

Theorem 1 Given every nonzero channel H ∈ C
Mr×Mt and

data matrix S ∈ {±1}K×P , S is uniquely identi able up to a
sign if and only ifC(.) is an NIS-OSTBC.

Proof: One can verify easily that to avoid the channel-code am-
biguity in (9) for any S ∈ {±1}K×P , H ∈ C

Mr×Mt \ {0}, it
is suf cient and necessary that the following statement holds: For
every pair of bit vectors (s, s̃) with s �= ±s̃, the condition

h
T
C(s) �= h̃

T
C(s̃) (11)

holds for any h, h̃ ∈ C
Mt \ {0}. By noting that

R(CT (s)) ∩R(CT (s̃)) ={
y

∣∣∣ y = C
T (s)h = C

T (s̃)h̃, for some h, h̃ ∈ C
Mt

}
(12)

and by comparing (12) and (11), we conclude that (11) is equiva-
lent to haveR(CT (s)) ∩ R(CT (s̃)) = {0} for any s �= ±s̃. �

There is a price for using NIS-OSTBCs, however.

Lemma 1 Suppose that C(.) is a real or complex GOD. If C(.)
is also an NIS-OSTBC, then it does not achieve the full rate; i.e.,
K < T for real GODs and K/2 < T for complex GODs.
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The proof of Lemma 1 is omitted here due to lack of space,
but it is available in [10]. Here we give an example verifying
Lemma 1. ForMt = 3, a BPSK full-rate OSTBC is given by [7]

C(s) =

⎡
⎣s1 −s2 −s3 −s4

s2 s1 s4 −s3

s3 −s4 s1 s2

⎤
⎦ (13)

where T = K = 4. If this code were an NIS-OSTBC, then

h
T
C(s) = h̃

T
C(s̃) (14)

must not hold for s �= ±s̃. Now, suppose that h = [ 1, 0, 0 ]T and
h̃ = [ 0, 1, 0 ]T . Then (14) becomes

[
s1 −s2 −s3 −s4

]
=

[
s̃2 s̃1 s̃4 −s̃3

]
(15)

which can de nitely be satis ed by some (s, s̃), s �= ±s̃.
NIS-OSTBCs have a constraint on the code length:

Property 1 All NIS-OSTBCs have 2Mt ≤ T .

The above property can be proven easily by using matrix analy-
sis results [11]. Many existing OSTBCs essentially do not satisfy
Property 1 [e.g., (13)], let alone falling into the NIS class.

3.2. Code Construction

We use the hints provided by Property 1 and Lemma 1 to come up
with the following OSTBC construction:

Construction I:

Given an OSTBC function Co(s) =
∑K

k=1
skXk ∈ C

Mt×T ,
whereK is even.
Step 1. SetC1(s) =

∑K−1

k=1
skXk.

Step 2. Output Cnew(s) = [ C1(μ) Co(ν) ] ∈ C
Mt×2T as the

new code, where s = [ μ
T
ν

T ]T , μ ∈ {±1}K−1, ν ∈ {±1}K .

In the above construction we concatenate two OSTBCs,
thereby forming a longer code that satis es Property 1. More-
over, we drop 1 bit so as not to enable full rate; cf., Lemma 1.
Surprisingly, by doing so it is suf cient to obtain an NIS-OSTBC:

Theorem 2 Given any OSTBC Co : R
K → C

Mt×T where K is
even, the code generated by Construction I is an NIS-OSTBC.

The proof of Theorem 2 is given in the next subsection.
We should stress that the NIS conversion in Construction I is
applicable to all OSTBCs having an even K (almost all existing
BPSK/QPSK OSTBCs have an even K). The resultant NIS-
OSTBCs have a data rate of (2K − 1)/(2T ) bits per channel use
(bpcu). This rate is relatively lower than that of the original code;
that is,K/T bpcu. To reduce the rate loss, the following modi ed
transmission scheme may be used:

Modi ed OSTBC Transmission Scheme

Given an OSTBC Co(s) =
∑K

k=1
skXk ∈ C

Mt×T where K is
even, and a frame length P ≥ 2.
Step 1. SetC1(s) =

∑K−1

k=1
skXk.

Step 2. For p = 1, transmitC1(s1) where s1 ∈ {±1}K−1.
Step 3. For p = 2, . . . , P , transmitCo(sp) where sp ∈ {±1}K .

The difference between the original and modi ed transmis-
sion schemes lies in the rst transmitted code block only, where
the modi ed scheme transmits a 1-bit-reduced OSTBC C1(.) in
place of Co(.) in the original case. Since the rst two code
blocks C1(s1) and Co(s2) can be seen as one NIS-OSTBC,
perfect identi cation of H (up to a sign) is guaranteed and it
follows that the rest of the code blocks Co(s3), . . . ,Co(sP )
are also perfectly identi able. Alternatively, the code frame
[ C1(s1),Co(s2), . . . ,Co(sP ) ] can be seen as a single OSTBC,
with the NIS characteristic inherited from [ C1(s1),Co(s2) ]. The
rate of the modi ed scheme is (2KP − 1)/(2TP ) bpcu. Hence,
for large P , the rate of the modi ed scheme approaches that of the
original.

It is interesting to mention that for the special case of the
BPSK Alamouti code in (4), the modi ed scheme is essentially
a pilot-code-assisted or semiblind [2] scheme. To see this, we note
that the corresponding C1(s1) is

C1(s1) =

[
s11 0
0 s11

]
(16)

If s11 is also chosen to be the pilot bit for solving sign ambiguity,
then it is equivalent thatC1(s1) serves as a pilot space-time code.
However, for K > 2 it is no longer true that the modi ed scheme
is a pilot-code-assisted scheme.

3.3. Proof of Theorem 2

Theorem 2 is proven by contradiction. Suppose that Cnew(.) is
not an NIS-OSTBC such that for some distinct pair of bit vectors
(s, s̃), there exist h, h̃ ∈ C

Mt \ {0} such that

h
T
Cnew(s) = h̃

T
Cnew(s̃). (17)

From Construction I, Eq. (17) can be decomposed to 2 equations

h
T
C1(μ) = h̃

T
C1(μ̃), (18)

h
T
Co(ν) = h̃

T
Co(ν̃), (19)

where s = [ μ
T

ν
T ]T and s̃ = [ μ̃

T
ν̃

T ]T . Postmultiplying (18)
and (19) by C1(μ) andCo(ν) respectively, we obtain

h
T = h̃

T
Q1, h

T = h̃
T
Q2, (20)

where

Q1 = 1

K−1
C1(μ̃)CH

1 (μ), Q2 = 1

K
Co(ν̃)CH

o (ν). (21)

Eqs. (20) lead to
h̃

T (Q1 −Q2) = 0, (22)
implying that Q1 −Q2 is singular. We now show that Q1 −Q2

cannot be singular. The matricesQ1 andQ2 can be expressed as

Q1 =
α1

K − 1
I + B1, Q2 =

α2

K
I + B2 (23)

where

α1 =

K−1∑
k=1

μkμ̃k ∈ {±1,±3, . . . ,±(K − 1)}, (24)

α2 =
K∑

k=1

νkν̃k ∈ {0,±2,±4, . . . , K}, (25)

III  31



and B1 = 1

K−1

∑
k

∑
� �=k

μ̃kμ�XkX
H
� and B2 =

1

K

∑
k

∑
� �=k ν̃kν�XkX

H
� are skew-Hermitian [cf., Eq. (2)].

Hence,
Q1 −Q2 = γI + (B1 −B2), (26)

where
γ =

α1

K − 1
−

α2

K
. (27)

If Q1 − Q2 is singular, then at least one of its eigenvalues has
to be 0. From (26), the eigenvalues of Q1 − Q2 are given by
λi(Q1−Q2) = γ+λi(B1−B2), i = 1, . . . , Mt. SinceB1−B2

is skew-Hermitian, its eigenvalues λi(B1 − B2) are either pure
imaginary or zero [11]. Hence, to have a singular Q1 − Q2 it is
necessary that γ = 0. Since K is even, we can write K = 2m
for some integerm. Likewise, α2 can be represented by α2 = 2c
where c ∈ {0,±1, . . . ,±m}. The condition γ = 0 implies that

α1 =
K − 1

K
α2 =

(2m− 1)c

m
= 2c−

c

m
. (28)

From (24) α1 is an odd number, but Eq. (28) indicates that α1 is
not an integer unless c = 0 or c = ±m. For c = 0 we have
α1 = 0, a contradiction. For c = ±m, we have α1 = ±(K −
1) and α2 = ±K. Such a condition can only be satis ed when
[ μ

T
ν

T ]T = ±[ μ̃
T

ν̃
T ]T , a contradiction to s �= ±s̃.

4. SIMULATION RESULTS

This simulation example compares the performance of the origi-
nal and modi ed OSTBC transmission schemes. The numbers of
transmitter and receiver antennas are Mt = 3 and Mr = 1, re-
spectively. The code matrix is the one in (13). In the simulation,
the channel is i.i.d. zero-mean Gaussian distributed. The blind re-
ceiver employed here is the SDR-ML [2] (note that the other blind
ML implementations could also be used, but with the page limit
only SDR-ML is considered). The sign ambiguity effect is elim-
inated by assuming that one of the bit symbols is known at the
receiver.

The results were plotted in Fig. 1. In the gure, we also show
the performance of differential OSTBC [12, 13], another effec-
tive noncoherent space-time technique. We see that the modi ed
scheme has a substantially better bit error performance than the
original scheme. It also yields better performance than the differ-
ential scheme for P ≥ 8, by about 1.5dB when P = 16.

Fig. 1 also reveals that the modi ed scheme achieves the full
noncoherent spatial diversity, as promised by its NIS characteris-
tic. In essence, the bit error probability of the modi ed scheme
is observed to be decaying at the same rate as that of the coherent
ML. However, such a decaying rate is lower in the original scheme.

5. CONCLUSION

The contributions of this paper are twofold. First, we have exam-
ined the impacts of NIS-OSTBCs on blind ML space-time coding.
In particular, our analysis has shown that NIS-OSTBCs are an at-
tractive class of blind space-time codes, in the sense that they are
uniquely identi able up to a sign for any nonzero channel. Sec-
ond, we have derived an NIS-OSTBC construction procedure. The
procedure works by applying a simple modi cation to an existing
OSTBC, and is very easy to use.
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Fig. 1. Bit error rate of the the original and modi ed OSTBC
schemes.
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