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ABSTRACT

Lower bounds are computed on the throughput of packet-

switched space-time coded systems with delay constraints.

The delay constraints are accounted for by defining a delay-

limited throughput as the instantaneous throughput of each

packet that can be maintained with a certain probability. The

analysis assumes quasi-static and independent fading across

packets, packet retransmissions until success, and negligible

overhead for acknowledgment packets and guard times. Up-

per bounds on the outage probabilities of orthogonal space-

time block codes (OSTBC) and spatial multiplexing with hor-

izontal encoding (SM-HE) are computed in the presence of

channel estimation errors to obtain lower bounds on the delay-

limited throughput. The target physical-layer data rate is se-

lected at each signal-to-noise ratio (SNR) to maximize the

lower bounds on the throughput. The results indicate that

higher throughput is achieved using OSTBC at low SNR and

SM-HE at high SNR. Furthermore, the loss of throughput due

to channel estimation errors is quantified.

Index Terms— MIMO systems, packet radio, optimization

methods, fading channels, information theory

1. INTRODUCTION

Many wireless systems, such as wireless local area networks

(WLANs), operate in quasi-static channels, where the fading

is constant for one coding block (or packet) and varies inde-

pendently between packet transmissions. In such slow fading

scenarios, traffic delay constraints often do not permit averag-

ing over several channel states to select user data rates. Thus,

the probability of exceeding the delay constraint is a key per-

formance metric for real-time traffic.

The probability of exceeding a delay constraint is equal

to the probability that the instantaneous throughput of each

packet is less than a target value; this value is defined as the

delay-limited throughput in this paper. In contrast to ergodic

throughput, the delay-limited throughput represents the user

throughput that can be maintained with a certain probability

in quasi-static channels. For packet-switched systems such

as WLANs, the delay-limited throughput can be determined

from the physical-layer packet error rate (PER) and the re-

transmission policy. In this paper, a packet is assumed to be

retransmitted until it is successful. Each retransmission expe-

riences independent quasi-static fading. The PER is defined

assuming no channel state information (CSI) at the transmit-

ter and capacity-achieving codes applied per packet. Under

these conditions, the packet error rate is equal to the channel

outage probability [1], defined as the probability that the tar-

get physical-layer data rate exceeds the mutual information,

conditioned on the fading realization, between the transmit-

ted and received signals.

In this paper, lower bounds on the delay-limited through-

put are obtained using upper bounds on the channel outage

probability with channel estimation errors for two classes

of space-time codes: orthogonal space-time block codes

(OSTBC) [2, 3] and spatial multiplexing with horizontal en-

coding (SM-HE) [1]. The target physical-layer data rate

is selected at each signal-to-noise ratio (SNR) to maximize

the throughput lower bounds. The data rate that maximizes

throughput at each SNR corresponds to the optimal rate adap-

tation strategy for packet-switched, space-time coded systems

in quasi-static fading.

The remainder of the paper is organized as follows. The

system model is given in Section 2. In Section 3, a lower

bound on the delay-limited throughput as a function of the

channel outage probability is derived. Section 4 presents up-

per bounds on the channel outage probability for OSTBC and

SM-HE with channel estimation errors. Numerical results for

maximum throughput lower bounds are given in Section 5.

Conclusions are given in Section 6.

2. SYSTEM MODEL

Consider a narrowband space-time coded system with MT

transmit and MR receive antennas. A quasi-static i.i.d.

Rayleigh fading channel is assumed with independent chan-

nel realizations across packet transmissions. The MR × 1
received vector y for a single transmission can be written as

y = Hx + n (1)
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where x is the MT × 1 transmitted vector, n is a MR × 1
complex additive white Gaussian noise (AWGN) vector with

covariance N0IMR , and H is the MR×MT channel matrix of

i.i.d. complex Gaussian random variables with zero mean and

unit variance. Here, Im denotes the m × m identity matrix.

With capacity-achieving codes applied per packet, the PER

is equal to the channel outage probability, given by Pout =
Pr[I < R], where I denotes the mutual information between

transmitted and received signals (conditioned on the channel

realization) and R is the target physical-layer data rate.

With channel estimation errors, the channel matrix can be

written as

H = Ĥ + H̃ (2)

where Ĥ and H̃ are i.i.d. Gaussian matrices of the channel

estimate and estimation error, respectively. In this paper, lin-

ear minimum mean-square error (LMMSE) estimation is as-

sumed with orthogonal training symbols to obtain the channel

estimates [4]. Under this assumption, the entries of H̃ and Ĥ
have variance Eh̃ and (1 − Eh̃), respectively, where Eh̃ is as-

sumed to be known at the receiver. Now, (1) in the presence

of channel estimation errors becomes

y = Ĥx + H̃x + n. (3)

For OSTBC, consider a codeword with T time slots, M
data symbols and spatial code rate rs = M/T . After appro-

priate receiver processing (e.g., stacking and conjugation for

the Alamouti code), the MRT × 1 effective received vector

y′
OSTBC can be written as

y′
OSTBC = Ĥeffs + H̃effs + n′ (4)

where Ĥeff and H̃eff are MRT ×M effective channel matri-

ces corresponding to Ĥ and H̃, respectively, s is the M × 1
vector of data symbols, and n′ is a MRT × 1 AWGN vec-

tor with covariance N0IMRT . Independent data symbols are

transmitted such that E[ss∗] = (Es/MT )IM , where E[·] de-

notes expectation, Es is the total transmit energy per time slot

and ∗ denotes conjugate transposition. Note that ρ = Es/N0

is the average SNR per receive antenna. Each component of

s is independently detected after pre-multiplying y′
OSTBC by

Ĥ∗
eff [5]. Note that Ĥ∗

effĤeff = ‖Ĥ‖2F IM where ‖ · ‖F de-

notes the Frobenius norm. Hence,

zOSTBC = Ĥ∗
effy′

OSTBC

‖Ĥ‖2F s + Ĥ∗
effH̃effs + Ĥ∗

effn′. (5)

Component-wise detection is then performed based on

zOSTBC.

For SM-HE, MR ≥ MT , and the transmitted vec-

tor x contains independent data symbols with covariance

(Es/MT )IMT . Consider a LMMSE receiver in which a re-

ceive matrix G pre-multiplies the received vector y in (3) to

obtain a MT × 1 vector zSM−HE. One can show that the

LMMSE matrix G is given by

G =
[
Ĥ∗Ĥ + MT

(
Eh̃ +

1
ρ

)
IMT

]−1

Ĥ∗. (6)

Hence,

zSM−HE = Gy

= GĤx + GH̃x + Gn. (7)

Component-wise detection is then performed based on

zSM−HE.

3. LOWER BOUND ON DELAY-LIMITED
THROUGHPUT

In this section, a lower bound on the delay-limited through-

put is derived assuming each packet is retransmitted until suc-

cess. Since the PER for each packet is Pout and the channel

varies independently between packet transmissions, the prob-

ability that N transmissions are needed for success is given by

PN−1
out (1 − Pout). For a physical-layer data rate of R and N

transmissions until the packet is successful, the throughput of

each packet is R/N if overhead due to acknowledgments and

guard times is negligible. Hence, the delay-limited through-

put Gt that can be maintained with probability (1 − Pt) is

defined by Pr[R/N ≤ Gt] = Pt. Therefore,

Pt = Pr[N ≥ R/Gt]

=
∞∑

m=�R/Gt�
(1− Pout)P m−1

out

= P
�R/Gt�−1
out . (8)

Thus, �R/Gt� = 1+lnPt/ lnPout, and a lower bound on Gt

is given by

Gt ≥ R

1 + ln Pt

lnPout

. (9)

Note that the above analysis can be easily extended to account

for overhead due to acknowledgments and guard times.

4. UPPER BOUNDS ON OUTAGE PROBABILITY

In this section, upper bounds on Pout are determined for

OSTBC and SM-HE with channel estimation errors. These

bounds are obtained by regarding the terms in (5) and (7)

with the channel estimation error matrices as additional i.i.d.

Gaussian noise [6, 4]. Since component-wise detection is per-

formed, the relevant mutual information given the channel

estimate is computed using the signal-to-interference-plus-

noise ratio (SINR) for each data symbol in the space-time

code. In the following subsections, OSTBC and SM-HE are

discussed separately.
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4.1. OSTBC

From (5), the SINR of the i-th component for OSTBC is given

by

SINRi,OSTBC =
Es/MT

[Ree,OSTBC]i,i
, i = 1, . . . , M (10)

where

Ree,OSTBC = E

[(
zOSTBC

‖Ĥ‖2F
− s

)(
zOSTBC

‖Ĥ‖2F
− s

)∗]
.

(11)

Note that

zOSTBC

‖Ĥ‖2F
− s =

Ĥ∗
effH̃eff

‖Ĥ‖2F
s +

Ĥ∗
eff

‖Ĥ‖2F
n′ (12)

and E[H̃effH̃∗
eff ] = MTEh̃IMRT . Hence,

Ree,OSTBC =
EsEh̃ + N0

‖Ĥ‖2F
IM (13)

and

SINRi,OSTBC =
ρ

MT (1 + ρEh̃)
‖Ĥ‖2F . (14)

Therefore, a lower bound on the mutual information for

OSTBC conditioned on the channel estimate is given by

IOSTBC ≥ rs log2(1 + SINRi,OSTBC)

= rs log2

(
1 +

ρ

MT (1 + ρEh̃)
‖Ĥ‖2F

)
. (15)

Note that ‖Ĥ‖2F = (1−Eh̃)X where X is a gamma random

variable with parameters (MRMT , 1). With this definition

and from (15), an upper bound on the outage probability is

given by

Pout,OSTBC = Pr[IOSTBC < R]

≤ Pr
[
X <

MT (1 + ρEh̃)
ρ(1− Eh̃)

(
2R/rs − 1

)]

=
γ

(
MRMT ,

MT (1+ρEh̃)

ρ(1−Eh̃) (2R/rs − 1)
)

Γ(MRMT )
(16)

where γ(a, x) =
∫ x

0
ta−1e−t dt and Γ(a) are the incomplete

gamma and gamma functions, respectively.

4.2. SM-HE

For SM-HE, the SINR of the i-th component is computed

from (7) and is given by

SINRi,SM−HE =
Es/MT

[Ree,SM−HE]i,i
− 1, i = 1, . . . , MT

(17)

where

Ree,SM−HE = E[(zSM−HE − x)(zSM−HE − x)∗] (18)

and the “−1” term accounts for the bias of the LMMSE re-

ceiver. Note that

zSM−HE − x = (GĤ− IMT )x + GH̃x + Gn

=
[
Ĥ∗Ĥ + MT

(
Eh̃ +

1
ρ

)
IMT

]−1

·
[
−MT

(
Eh̃ +

1
ρ

)
x + Ĥ∗H̃x + Ĥ∗n

]

(19)

and E[H̃H̃∗] = MTEh̃IMR . After some algebra, the matrix

Ree,SM−HE can be written as

Ree,SM−HE = Es

(
1
ρ

+ Eh̃

)[
Ĥ∗Ĥ + MT

(
Eh̃ +

1
ρ

)
IMT

]−1

.

(20)

Hence,

SINRi,SM−HE =
1{[

IMT + ρ
MT (1+ρEh̃)Ĥ

∗Ĥ
]−1

}
i,i

− 1.

(21)

The mutual information for SM-HE is limited by the smallest

post-processing SINR [1]. Thus, a lower bound on the mutual

information for SM-HE conditioned on the channel estimate

is given by

ISM−HE ≥ MT log2

(
1 + min

i∈{1,...,MT }
SINRi,SM−HE

)
.

(22)

From (22), an upper bound on the outage probability for

SM-HE is

Pout,SM−HE = Pr[ISM−HE < R]

≤ Pr
[
max

i

{[
IMT +

ρ

MT (1 + ρEh̃)
Ĥ∗Ĥ

]−1
}

i,i

> 2−R/MT

]

(23)

≤ Pr
[
λmin

(
Ĥ∗Ĥ
1− Eh̃

)
<

MT (1 + ρEh̃)(2R/MT − 1)
ρ(1− Eh̃)

]

(24)

where (24) follows from Appendix A of [7] and λmin(·) de-

notes the minimum eigenvalue. Note that λmin(Ĥ∗Ĥ/(1 −
Eh̃)) has the same distribution as λmin(H∗H). Hence,

Fλmin(λ) ≤ FY (λ) where Fλmin(·) and FY (·) denote the

cumulative distribution functions (cdfs) of λmin(Ĥ∗Ĥ/(1 −
Eh̃)) and a random variable Y , respectively. Here, Y is a
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Fig. 1. Maximum lower bounds on delay-limited throughput

versus SNR with channel estimation errors and α = 0.25.

Here, MT = 2 and MR = 4. Simulation results for SM-HE

using (23) are labeled by “sim.” Results with perfect channel

estimation are labeled by “perf. CE.”

gamma variable with parameters (MR−MT +1, 1/MT ) [8].

From the above relations, we have

Pout,SM−HE ≤
γ

(
MR −MT + 1,

M2
T (1+ρEh̃)(2R/MT −1)

ρ(1−Eh̃)

)

Γ(MR −MT + 1)
.

(25)

5. NUMERICAL RESULTS

In this section, the impact of channel estimation errors is eval-

uated using the lower bound on the delay-limited throughput

given in (9) and the upper bounds on Pout given in (16), (23)

and (25). From LMMSE channel estimation, Eh̃ as a function

of SNR is given by Eh̃ = 1/(1+αρ) where α depends on the

training time and the training SNR [4].

Fig. 1 is a plot of the lower bounds on the delay-limited

throughput (maximized over R) versus SNR for OSTBC and

SM-HE with MT = 2 and MR = 4. For OSTBC, the

Alamouti code is used with rs = 1. There exist efficient

algorithms to determine the data rates R that maximize the

throughput lower bounds. The target throughput outage level

is Pt = 0.1, and the channel estimation error parameter is

α = 0.25. Throughput curves for perfect channel estimation

are also included.

For these parameters, there is a loss of approximately 7 dB

due to channel estimation errors. SM-HE throughput results

are also plotted using simulations of the outage probability

upper bound (23). There is a 2 dB gap between the SM-HE

simulations and the throughput obtained from the analytical

upper bound (25). It can be seen that OSTBC is preferred at

low SNR, while SM-HE provides greater throughput at high

SNR.

6. CONCLUSION

Delay-limited throughput is an important performance met-

ric for real-time applications in quasi-static wireless channels.

In this paper, lower bounds on the delay-limited throughput

of OSTBC and SM-HE are computed to evaluate the impact

of channel estimation errors. It is seen that channel estima-

tion errors result in significant throughput loss for space-time

coded systems. Spatial multiplexing yields higher through-

put than OSTBC at high SNR as a result of the independent

spatial data streams. At low SNR, OSTBC provides greater

throughput because the increased diversity provides better ro-

bustness to fading and noise.
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